Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (01): 16-21.doi: 10.13475/j.fzxb.20200504006

• Fiber Materials • Previous Articles     Next Articles

Synthesis and properties of biodegradable polyglycolic acid oligomer modified polyester

JIN Linlin1, TIAN Junkai2, LI Jiawei1, QI Dongming1(), SHEN Xiaowei2, WU Chuntao3   

  1. 1. Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Satellite Petrochemical Co., Ltd., Jiaxing, Zhejiang 314000, China
    3. Ningbo Municipal Bureau of Ecology and Environment, Ningbo, Zhejiang 315000, China
  • Received:2020-05-19 Revised:2020-09-08 Online:2021-01-15 Published:2021-01-21
  • Contact: QI Dongming E-mail:dongmingqi@zstu.edu.cn

Abstract:

In order to improve the degradation performance of aromatic poly (ethylene terephthalate) (PET), a novel polyethylene terephthalate-co-polyglycolic acid copolymer (PET-co-PGA) was synthesized by copolymerization modification of polyester with degradable polyglycolic acid (PGA) oligomer, through combining melt polycondensation and solid-phase polycondensation process. The structure, intrinsic viscosity, crytallization behavior and degradation property of the novel copolyester were characterized and analyzed by using nuclear magnetic resonance spectrometer, differential scanning calorimeter, tensile tester, scanning electron microscope and fluorescence microscope. The results show that the introduction of PGA damages the regularity of PET and results in the decrease of the melting point, crystallization temperature and crystallization ability. The tensile experiments show that the synthesized copolyester with the low volume of addition of PGA has better tenacity compared with pure PET. When 5% PGA is added,the elongation at the break of the copolyester is increased from 13.1% to 15.0%. The degradation rate of pre-modified PET gradually increases with the amount of PGA added.

Key words: modified polyester, polyglycolic acid, poly (ethylene terephthalate), modification by copolymerization, melt polycondensation, solid state polycondensation

CLC Number: 

  • TS193.5

Fig.1

Possible reaction scheme of PET-co-PGA copolymer"

Tab.1

Feed radio of PET-co-PGA copolymer"

样品
编号
PTA的量/
mol
EG的量/
mol
PGA质量
分数/%
1# 0.9 1.2 0
2# 0.9 1.2 1
3# 0.9 1.2 5
4# 0.9 1.2 10
5# 0.9 1.2 15

Fig.2

Chemical structural formula (a)and 1H-NMR spectra(b)of PET-co-PGA copolyesters"

Fig.3

DSC thermorgrams of PET and PET-co-PGA copolyesters. (a) Glass transition temperation;(b) Crystallization temperation;(c) Melting point"

Tab.2

DSC data of PET and PET-co-PGA copolyester"

样品
编号
Tg/
Tc/
Tc-Tg/
Tm/
ΔHc/
(J·g-1)
ΔHm/
(J·g-1)
1# 81.94 180 98.06 248 47.32 67.57
2# 78.68 172 93.32 239 80.05 69.63
3# 75.23 140 64.77 218 17.50 57.10
4# 71.84 191 33.51
5# 67.21 173 8.41

Tab.3

Thermodynamic parameters of PET-co-PGA"

样品
编号
拉伸断裂强度/
MPa
弹性模量/
MPa
断裂伸长率/
%
1# 67.67±0.4 589.03±2.5 13.09±0.20
2# 68.97±0.5 590.19±1.5 13.11±0.15
3# 69.68±0.4 600.32±2.0 15.28±0.22
4# 58.03±0.5 535.48±1.8 10.94±0.24
5# 55.47±0.4 523.33±1.7 9.64±0.28

Fig.4

Alkaline condition degradation of copolyesters"

Fig.5

SEM images of degradation process of copolyester fiber after 0 (a) and 6 weeks (b) of degradation(×5 000)"

Fig.6

Fluorescent photo of copolyester fiber after 0 (a) and 6 weeks (b) of degradation"

[1] 黄继明, 刘润清, 韦恩光, 等. CaO/MgO 复合固体碱催化剂催化降解 PET[J]. 工程塑料应用, 2018,46(7):46-50.
HUANG Jiming, LIU Runqing, WEI Enguang, et al. Degradation behaviors of PET catalyzed by CaO/MgO composite as solid base catalyst[J]. Engineering Plastics Application, 2018,46(7):46-50.
[2] 郑宁来. 2020 年世界 PET 产销情况[J]. 聚酯工业, 2017,30(2):4.
ZHENG Ninglai. World PET production and sales in 2020[J]. Polyester Industry, 2017,30(2):4.
[3] 刘红阳. 废旧PET/PC塑料回收与化学再生利用现状[J]. 橡塑资源利用, 2005(6):23-27.
LIU Hongyang. Current situation of recycling and chemical recycling of waste PET/PC plastics[J]. Rubber and Plastic Resources Utilization, 2005 (6):23-27.
[4] 李永真, 王贵珍, 吕静, 等. 废PET瓶回收再生技术及应用进展[J]. 化学工程与装备, 2010(6):145-146.
LI Yongzhen, WANG Guizhen, LÜ Jing, et al. Recycling technology and application progress of waste PET bottles[J]. Chemical Engineering and Equipment, 2010(6):145-146.
[5] MULLER R J, KLEEBERG I, DECKWER W D. Biodegradation of polyesters containing aromatic constituents[J]. Journal of Biotechnology, 2001,86:87-95.
doi: 10.1016/s0168-1656(00)00407-7 pmid: 11245897
[6] URBANEK A K, MIRONCZUK A M, GARCIA M A, et al. Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics[J]. Proteins and Proteomics, 2020,1868(2):1-9.
[7] 高翠丽, 夏延致, 纪全, 等. PET/PLA共混物的降解性[J]. 化学学报, 2006,9(57):2237-2240.
GAO Cuili, XIA Yanzhi, JI Quan, et al. Biodegradability of polyblends PET/PLA[J]. Journal of Chemical Industry Anengineering, 2006,9(57):2237-2240.
[8] OLEWNIK E, CZERWINSK W. Synjournal, structural study and hydrolytic degradation of copolymer based on glycolic acid and bis-2-hydroxyethyl terephthalate[J]. Polymer Degradation and Stability, 2009,94:221-226.
[9] 孙亚芳, 陈世昌, 陈文兴, 等. PET固相缩聚工艺与反应动力学机理研究[J]. 浙江理工大学学报(自然科学版), 2017,37(2):226-231.
SUN Yafang, CHEN Shichang, CHEN Wenxing, et al. Study on the solid state polycondensation process and reaction kinetics mechanism of PET[J]. Journal of Zhejiang University of Science and Technology(Natural Science Edition), 2017,37(2):226-231.
[10] KASMI N, MAJDOUB M, PAPAGERORGIOU G Z, et al. Solid-state polymerization of poly(ethylene furanoate) biobased polyester: I: effect of catalyst type on molecular weight increase[J]. Polymers, 2017,9(11):607.
[11] 山根和行, 佐藤浩幸, 川上进盟. 聚乙醇酸树脂组合物及其成型物: 200480008493.8 [P]. 2006 -05-03.
YAMANE Kazuyuki, SATO Hiroyuki, KAWAKAMI Yukichika. Polyglycolic acid resin composition and its products: 200480008493.8[P]. 2006 -05-03.
[12] LIU W D, QIU J H, FEI R H, et al. Manufac turing of thermally remoldable blends from epoxidized soybean oil and poly(lactic acid) via dynamic cross-linking in a twin-screw extruder[J]. Industrial & Engineering Chemistry Research, 2018,57:7516-7524.
[13] 陈玉君, 杨始堃, 李焕文, 等, 高特性度聚酯的研究:化学增粘法[J]. 广州化工, 1989,4:20-24.
CHEN Yujun, YANG Shikun, LI Huanwen, et al. Study on intrinsic viscosity polyester: chemical tackifying method[J]. Guangzhou Chemical Industry, 1989,4:20-24.
[14] SCHEIRS J, LONG T E. Modern polymer[M]. New York: John Wiley & Sons Ltd., 2003: 515-520.
[15] 郑今欢, 殷瑛, 关艳峰, 等. 碱处理与PTT纤维形态结构和力学性能的影响[J]. 纺织学报, 2006,27(12):44-47.
ZHENG Jinhuan, YIN Ying, GUAN Yanfeng, et al. Effect of alkali treatment on morphological structure and mechanical properties of PTT fiber[J]. Journal of Textile Research, 2006,27(12):44-47.
[16] MATOS M, SOUSA A F, FONSECAF A C, et al. A new generation of furanic copolyesters with enhanced degradability:poly(ethylene-2,5-furandicarboxylate)-co-poly(lactic acid)copolyesters[J]. Macromolecular Chemistry and Physics, 2014,215:2175-2184.
[1] ZHANG Tengfei, SHI Ludan, HU Hongmei, WANG Yu, WANG Xueli, YU Jianyong. Synthesis and characterization of bio-based polyamide 56 oligomer modified polyester [J]. Journal of Textile Research, 2019, 40(06): 1-7.
[2] XIANG Guodong, GAO Qingwen, DENG Qianqian, ZHANG Xuzhen, WANG Xiuhua. Preparation and performance of easy cationic dye-modified polyester by solid-phase polycondensation [J]. Journal of Textile Research, 2019, 40(04): 21-25.
[3] . Thermal and dyeing properties of novel cationic-dyeable polyester fabrics under atmospheric pressure [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(12): 71-75.
[4] . Development and performance evaluation of cool -type interweave silk fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(2): 39-0.
[5] WU Shuangquan;ZHANG Peihua;GUO Zheng;TAO Sha. Properties of Polyglycolic acid fiber in vitro degradation [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(04): 5-9.
[6] 李唯唯;陈国强;张瑞欣. Dyeing property of kaolin-modified polyester fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(9): 87-90.
[7] LIANG Fei;WANG Rui;ZHANG Da-sheng;CHEN Li-hua. Structure design of profile modified polyester fabric and its hygroscopicity and moisture liberation properties [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(8): 71-75.
[8] GUAN Xin-hai;BAI Xiu-e. Configuration and properties of the tussah silk-like polyester fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(11): 94-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!