Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (06): 171-179.doi: 10.13475/j.fzxb.20200601909

Special Issue: Flame Retardant Fibers and Textiles

• Comprehensive Review • Previous Articles     Next Articles

Research advances in thermoplastic polymers for flame retardant and anti-dripping behavior

SUN Chenying1, WANG Wenqing1,2,3, JIN Gaoling4, WANG Rui1,2,3()   

  1. 1. School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. Key Laboratory of Clothing Materials R&D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029, China
    3. Beijing Engineering Research Center of Textile Nanofiber, Beijing 100029, China
    4. China Chemical Fibers Association, Beijing 100020, China
  • Received:2020-06-08 Revised:2020-11-23 Online:2021-06-15 Published:2021-06-28
  • Contact: WANG Rui E-mail:clywangrui@bift.edu.cn

Abstract:

Targetting at the droplet phenomenon of flame retardant polymers and fabrics when burning to achieve high-quality flame-retardant thermoplastic polymers and expand the application range of flame retardant fibers and products, this article reviewed the current research advances and latest findings in the flame retardant and anti-dripping behavior of thermoplastic polymers, and described the commonly used current methods for flame retardant and anti-dripping modification. The common methods of flame retardant and anti-dripping modification including copolymerization, blending and construction of flame retardant and droplet resistant coatings on the fabric surface were described. The main mechanisms of flame-retardant and anti-dripping are analyzed, i.e., increasing the viscosity of polymer melt and forming a dense and stable carbon layer. The flame retardant and anti-dripping applications of different thermoplastic polymer systems are summarized. It is pointed out that the design and synthesis of the multi-element compound anti-dripping system, and the optimization of the interaction mode between the anti-dripping system and the matrix material are the main development trends of flame retardant and anti-dripping.

Key words: thermoplastic polymer, flame retardant, anti-dripping, anti-dripping mechanism, anti-dripping application

CLC Number: 

  • TQ372.4

Tab.1

Anti-dripping method and implementation route"

类别 具体方法 实施路线
化学改性 共聚法 在聚合物反应过程中添加反应型抗熔滴单体,将其接入聚合物主链或侧链中
纤维表面接枝 在聚合物织物的纤维表面接枝反应型抗熔滴剂
物理改性 共混法 将普通聚合物与单一/多元复配抗熔滴剂进行熔融或溶液混合
复合纺丝 将具备阻燃抗熔滴功能聚合物与普通聚合物分别输入同一纺丝组件,汇合后挤出固化成纤
织物表面整理 通过浸渍等方法在织物表面形成阻燃抗熔滴涂层
[1] 朱士凤, 施楣梧. 热塑性纤维防熔滴研究的现状和发展趋势[J]. 纺织学报, 2012, 33(6):121-124.
ZHU Shifeng, SHI Meiwu. Current status and developing trend of research on anti-dripping of thermoplastic fibers[J]. Journal of Textile Research, 2012, 33(6):121-124.
[2] 朱庆松, 王利生, 李前树. 阻燃聚酯纤维的进展[J]. 纺织学报, 1998, 19(4):260-262.
ZHU Qingsong, WANG Lisheng, LI Qianshu. Development of flame-retardant polyester fibers[J]. Journal of Textile Research, 1998, 19(4):260-262.
[3] BOURBIGOT S, DUQUESNE S. Fire retardant polymers: recent developments and opportunities[J]. Journal of Materials Chemistry, 2007, 17(22):2283.
doi: 10.1039/b702511d
[4] 江涌, 刘敏, 梁倩倩, 等. 阻燃抗熔滴聚酯纤维的研究及应用[J]. 纺织科技进展, 2019(9):1-4.
JIANG Yong, LIU Min, LIANG Qianqian, et al. Research and application of flame-retardant anti-dripping polyester fiber[J]. Progress in Textile Science and Technology, 2019(9):1-4.
[5] GE X, WANG C, HU Z, et al. Phosphorus-containing telechelic polyester-based ionomer: Facile synthesis and antidripping effects[J]. Journal of Polymer Science Part A, 2008, 46(9):2994-3006.
doi: 10.1002/(ISSN)1099-0518
[6] DONG X, CHEN L, DUAN R T, et al. Phenylmaleimide-containing PET-based copolyester: cross-linking from 2π + π cycloaddition toward flame retardance and anti-dripping[J]. Polymer Chemistry, 2016, 7(15):2698-2708.
doi: 10.1039/C6PY00183A
[7] LIU B, CHEN L, GUO D, et al. Fire-safe polyesters enabled by end-group capturing chemistry[J]. Angewandte Chemie, 2019, 58(27):9188-9193.
[8] 周旺, 龙丽娟, 于杰. 六苯氧基环三磷腈对PA6阻燃性能的影响[J]. 塑料科技, 2018, 46(3):129-133.
ZHOU Wang, LONG Lijuan, YU Jie. Effect of hexaphenoxycyclotriphosphazene as flame retardant on PA6[J]. Plastics Science and Technology, 2018, 46(3):129-133.
[9] DINIZ A T, HUTH C, SCHARTEL B, et al. Dripping and decomposition under fire: Melamine cyanurate vs. glass fibres in polyamide 6[J]. Polymer Degradation and Stability, 2019. DOI:10.1016/j.polymdegradsTab.2019.109048.
doi: 10.1016/j.polymdegradsTab.2019.109048
[10] ENESCU D, FRACHE A, LAVASELLI M, et al. Novel phosphorous-nitrogen intumescent flame retardant system. Its effects on flame retardancy and thermal properties of polypropylene[J]. Polymer Degradation and Stability, 2013, 98(1):297-305.
doi: 10.1016/j.polymdegradstab.2012.09.012
[11] 关乐. 一种海岛型新型聚酯阻燃抗熔滴长丝的研制[J]. 现代丝绸科学与技术, 2016, 31(3):88-91.
GUAN Le. Development of an island type flame retardant and anti-dripping polyester fiber[J]. Modern Silk Science & Technology, 2016, 31(3):88-91.
[12] 姬洪, 冯新星, 陈建勇, 等. 芳纶1313/阻燃涤纶混纺纱线的阻燃抗熔滴性能[J]. 纺织学报, 2013, 34(4):37-40.
JI Hong, FENG Xinxing, CHEN Jianyong, et al. Flame-retardant and melt-dripping resistant properties of aramid 1313/flame retardant polyester blended yarns[J]. Journal of Textile Research, 2013, 34(4):37-40.
[13] FANG Y, LIU X, TAO X, et al. Intumescent flame retardant and anti-dripping of PET fabrics through layer-by-layer assembly of chitosan and ammonium polyphosphate[J]. Progress in Organic Coatings, 2019, 134:162-168.
doi: 10.1016/j.porgcoat.2019.05.010
[14] KUNDU C K, WANG X, HOU Y, et al. Construction of flame retardant coating on polyamide 6.6 via UV grafting of phosphorylated chitosan and sol-gel process of organo-silane[J]. Carbohydrate Polymers, 2018, 181:833-840.
doi: 10.1016/j.carbpol.2017.11.069
[15] KUNDU C K, SONG L, HU Y, et al. Sol-gel coatings from DOPO-alkoxysilanes: Efficacy in fire protection of polyamide 66 textiles[J]. European Polymer Journal, 2020. DOI:10.1016/j.eurpolymj.2020.109483.
doi: 10.1016/j.eurpolymj.2020.109483
[16] ZHANG Y, NI Y, HE M, et al. Phosphorus-containing copolyesters: the effect of ionic group and its analogous phosphorus heterocycles on their flame-retardant and anti-dripping performances[J]. Polymer, 2015, 60:50-61.
doi: 10.1016/j.polymer.2015.01.030
[17] CHEN Zhangyan, XIAO Peng, ZHANG Jinming, et al. A facile strategy to fabricate cellulose-based, flame-retardant, transparent and anti-dripping protective coatings[J]. Chemical Engineering Journal, 2019. DOI:10.1016/j.cej.2019.122270.
doi: 10.1016/j.cej.2019.122270
[18] WU J, CHEN L, FU T, et al. New application for aromatic Schiff base: High efficient flame-retardant and anti-dripping action for polyesters[J]. Chemical Engineering Journal, 2018, 336:622-632.
doi: 10.1016/j.cej.2017.12.047
[19] 应杰, 邱琪浩, 顾亥楠, 等. 磺酸盐/滑石粉协同阻燃PC材料的性能研究[J]. 塑料工业, 2019, 47(6):122-126.
YING Jie, QIU Qihao, GU Hainan, et al. Study on the properties of sulfonate and talcum powder synergistic flame retardant PC materials[J]. China Plastic Industry, 2019, 47(6):122-126.
[20] ZHANG X, ZHANG L, WU Q, et al. The influence of synergistic effects of hexakis (4-nitrophenoxy) cyclotriphosphazene and POE-g-MA on anti-dripping and flame retardancy of PET[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(3):993-999.
doi: 10.1016/j.jiec.2012.11.022
[21] GUO D M, FU T, RUAN C, et al. A new approach to improving flame retardancy, smoke suppression and anti-dripping of PET: via arylene-ether units rearrangement reactions at high temperature[J]. Polymer, 2015, 77:21-31.
doi: 10.1016/j.polymer.2015.09.016
[22] WU J N, QIN Z H, CHEN L, et al. Tailoring Schiff base cross-linking by cyano group toward excellent flame retardancy, anti-dripping and smoke suppression of PET[J]. Polymer, 2018, 153:78-85.
doi: 10.1016/j.polymer.2018.08.004
[23] KUNDU C K, YU B, GANGIREDDY C S R, et al. UV grafting of a DOPO-based phosphoramidate monomer onto polyamide 66 fabrics for flame retardant treat-ment[J]. Industrial & Engineering Chemistry Research, 2017, 56(6):1376-1384.
doi: 10.1021/acs.iecr.6b04188
[24] SU X, YI Y, TAO J, et al. Synergistic effect of zinc hydroxystannate with intumescent flame-retardants on fire retardancy and thermal behavior of polypropy-lene[J]. Polymer Degradation and Stability, 2012, 97(11):2128-2135.
doi: 10.1016/j.polymdegradstab.2012.08.017
[25] CHEN S, LI J, ZHU Y, et al. Roles of anion of polyoxometalate-based ionic liquids in properties of intumescent flame retardant polypropylene[J]. Rsc Advances, 2014, 4(62):32902-32913.
doi: 10.1039/C4RA04592K
[26] LIU H, ZHONG Q, KONG Q, et al. Synergistic effect of organophilic Fe-montmorillonite on flammability in polypropylene/intumescent flame retardant system[J]. Journal of Thermal Analysis & Calorimetry, 2014, 117(2):693-699.
[27] XIAO D, LI Z, ZHAO X, et al. Functional organoclay with high thermal stability and its synergistic effect on intumescent flame retardant polypropylene[J]. Applied Clay Science, 2017, 143:192-198.
doi: 10.1016/j.clay.2017.03.039
[28] ZHAO Z, JIN Q, ZHANG N, et al. Preparation of a novel polysiloxane and its synergistic effect with ammonium polyphosphate on the flame retardancy of polypropylene[J]. Polymer Degradation and Stability, 2018, 150:73-85.
doi: 10.1016/j.polymdegradstab.2018.02.007
[29] XIAO D, LI Z, GOHS U, et al. Functionalized allylamine polyphosphate as novel multifunctional highly efficient fire retardant for polypropylene[J]. Polymer Chemistry, 2017, 8(40):6309-6318.
doi: 10.1039/C7PY01315A
[30] LIU J, GUO Y, ZHANG Y, et al. Thermal conduction and fire property of glass fiber-reinforced high impact polystyrene/magnesium hydroxide/microencapsulated red phosphorus composite[J]. Polymer Degradation and Stability, 2016, 129:180-191.
doi: 10.1016/j.polymdegradstab.2016.04.015
[31] LIU J, ZHANG Y, GUO Y, et al. Effect of carbon black on the thermal degradation and flammability properties of flame-retarded high impact polystyrene/magnesium hydroxide/microencapsulated red phosphorus composite[J]. Polymer Composites, 2018, 39(3):770-782.
doi: 10.1002/pc.v39.3
[32] LIU J, ZHANG Y, YU Z, et al. Enhancement of organoclay on thermal and flame retardant properties of polystyrene/magnesium hydroxide composite[J]. Polymer Composites, 2016, 37(3):746-755.
doi: 10.1002/pc.v37.3
[33] ZHANG Y, CHEN L, ZHAO J, et al. A phosphorus-containing PET ionomer: from ionic aggregates to flame retardance and restricted melt-dripping[J]. Polymer Chemistry, 2014, 5(6):1982-1991.
doi: 10.1039/C3PY01030A
[34] HAN H, BHOWMIK P K. Wholly aromatic liquid-crystalline polyesters[J]. Progress in Polymer Science, 1997, 22(7):1431-1502.
doi: 10.1016/S0079-6700(96)00028-7
[35] PATEL P, HULL T R, LYON R E, et al. Investigation of the thermal decomposition and flammability of PEEK and its carbon and glass-fibre composites[J]. Polymer Degradation and Stability, 2011, 96(1):12-22.
doi: 10.1016/j.polymdegradstab.2010.11.009
[36] GUO D, CHEN X, TANG L, et al. PET-based copolyesters with bisphenol A or bisphenol F structural units: Their distinct differences in pyrolysis behaviours and flame-retardant performances[J]. Polymer Degradation & Stability, 2015, 126:158-168.
[37] MAO Z, LI J, PAN F, et al. High-temperature auto-cross-linking cyclotriphosphaznene: synthesis and application in flame retardance and antidripping poly (ethylene terephthalate)[J]. Industrial & Engineering Chemistry Research, 2015, 54(15):3788-3799.
doi: 10.1021/ie504510t
[38] LI T, LI S, MA T, et al. Novel organic-inorganic hybrid polyphosphazene modified manganese hypophosphite shuttles towards the fire retardance and anti-dripping of PET[J]. European Polymer Journal, 2019, 10.1016/j.eurpolymj.2019.109270.
doi: 10.1016/j.eurpolymj.2019.109270
[39] LI J, PAN F, XU H, et al. The flame-retardancy and anti-dripping properties of novel poly(ethylene terephalate)/cyclotriphosphazene/silicone composites[J]. Polymer Degradation & Stability, 2014, 110:268-277.
[40] WANG C, WU L, DAI Y, et al. Application of self-templated PHMA sub-microtubes in enhancing flame-retardance and anti-dripping of PET[J]. Polymer Degradation & Stability, 2018, 154:239-247.
[41] 薛宝霞, 牛梅, 张莹, 等. 不同纳米碳材料阻燃聚对苯二甲酸乙二醇酯复合材料性能的表征[J]. 高分子材料科学与工程, 2015, 31(3):65-70.
XUE Baoxia, NIU Mei, ZHANG Ying, et al. Characterization of flame retardant polyester composites with different carbon nanomaterials[J]. Polymer Materials Science & Engineering, 2015, 31(3):65-70.
[42] YANG S, LV G, LIU Y, et al. Synergism of polysiloxane and zinc borate flame retardant polycarbonate[J]. Polymer Degradation and Stability, 2013, 98(12):2795-2800.
doi: 10.1016/j.polymdegradstab.2013.10.017
[43] WEI Y X, DENG C, ZHAO Z Y, et al. A novel organic-inorganic hybrid SiO 2@DPP for the fire retardance of polycarbonate [J]. Polymer Degradation and Stability, 2018, 154:177-185.
doi: 10.1016/j.polymdegradstab.2018.05.014
[44] 殷德树, 丁永红, 俞强, 等. 抗滴落剂对PC/KSS阻燃材料性能的影响[J]. 塑料科技, 2010, 38(1):93-96.
YIN Deshu, DING Yonghong, YU Qiang, et al. Effect of Anti-dripping Agent on Properties of PC/KSS Flame Retarded Composite[J]. Plastics Science and Technology, 2010, 38(1):93-96.
[45] JIN X, WANG J, DAI L, et al. Largely enhanced thermal conductive, dielectric, mechanical and anti-dripping performance in polycarbonate/boron nitride composites with graphene nanoplatelet and carbon nanotube[J]. Composites Science and Technology, 2019. DOI:10.1016/j.compscitech.2019.107862.
doi: 10.1016/j.compscitech.2019.107862
[46] CHEN Y, WANG W, QIU Y, et al. Terminal group effects of phosphazene-triazine bi-group flame retardant additives in flame retardant polylactic acid compo-sites[J]. Polymer Degradation and Stability, 2017, 140:166-175.
doi: 10.1016/j.polymdegradstab.2017.04.024
[47] LIU G, GAO S. Synergistic effect between aluminum hypophosphite and a new intumescent flame retardant system in poly(lactic acid)[J]. Journal of Applied Polymer Science, 2018, 10.1002/app.46359.
[48] 莫达杰, 李旭明, 许增慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸阻燃纤维的制备及其性能[J]. 纺织学报, 2019, 40(5):12-17.
MO Dajie, LI Xuming, XU Zenghui. Preparation and properties of poly ( 3-hydroxybutyrate-co-3-hydroxyl valerate)/polylactic acid flame retardant fibers[J]. Journal of Textile Research, 2019, 40(5):12-17.
[49] CHENG K C, YU C B, GUO W, et al. Thermal properties and flammability of polylactide nanocomposites with aluminum trihydrate and organo-clay[J]. Carbohydrate Polymers, 2012, 87(2):1119-1123.
doi: 10.1016/j.carbpol.2011.08.065
[50] CHENG K C, LIN Y H, GUO W, et al. Flammability and tensile properties of polylactide nanocomposites with short carbon fibers[J]. Journal of Materials Science, 2015, 50(4):1605-1612.
doi: 10.1007/s10853-014-8721-2
[51] LYU W, CHEN X, LI Y, et al. Thermal stability and heat release effect of flame retarded PA66 prepared by end-pieces capping technology[J]. Composites Part B: Engineering, 2019, 167:34-43.
doi: 10.1016/j.compositesb.2018.12.016
[52] VASILJEVIC J, COLOVIC M, JERMAN I, et al. In situ prepared polyamide 6/DOPO-derivative nanocomposite for melt-spinning of flame retardant textile filaments[J]. Polymer Degradation and Stability, 2019, 166:50-59.
doi: 10.1016/j.polymdegradstab.2019.05.011
[53] ZHONG Y, ZHANG L, FISCHER A, et al. The effect of hBN on the flame retardancy and thermal stability of P-N flame retardant PA6[J]. Journal of Macromolecular Science Part A, 2017, 55(1):17-23.
doi: 10.1080/10601325.2017.1387484
[54] 金晓冬, 孙军, 谷晓昱, 等. 碳纳米管表面改性在阻燃尼龙6中的应用[J]. 塑料, 2015(1):16-18.
JIN Xiaodong, SUN Jun, GU Xiaoyu, et al. Surface Modification of Nanoparticles and Its Application in Improving Flame Retardancy of PA6[J]. Plastic, 2015(1):16-18.
[55] FAN S, PENG B, YUAN R, et al. A novel Schiff base-containing branched polysiloxane as a self-crosslinking flame retardant for PA6 with low heat release and excellent anti-dripping performance[J]. Composites Part B: Engineering, 2019. DOI:10.1016/j.compositesb.2019.107684.
doi: 10.1016/j.compositesb.2019.107684
[56] ZHANG Y, WANG B, YUAN B, et al. Preparation of large size reduced graphene oxide wrapped ammonium polyphosphate and its enhancement on the mechanical and flame retardant properties of thermoplastic polyurethane[J]. Industrial & Engineering Chemistry Research, 2017, 56(26):4-44.
[57] HUANG S C, DENG C, WANG S X, et al. Electrostatic action induced interfacial accumulation of layered double hydroxides towards highly efficient flame retardance and mechanical enhancement of thermoplastic polyurethane/ammonium polypho- sphate[J]. Polymer Degradation and Stability, 2019, 165:126-136.
doi: 10.1016/j.polymdegradstab.2019.05.006
[58] LIU L, XU Y, LI S, et al. A novel strategy for simultaneously improving the fire safety, water resistance and compatibility of thermoplastic polyurethane composites through the construction of biomimetic hydrophobic structure of intumescent flame retardant synergistic system[J]. Composites Part B: Engineering, 2019, 10.1016/j.compositesb.2019.107218.
doi: 10.1016/j.compositesb.2019.107218
[59] WANG H, QIAO H, GUO J, et al. Preparation of cobalt-based metal organic framework and its application as synergistic flame retardant in thermoplastic polyurethane (TPU)[J]. Composites Part B: Engineering, 2019. DOI:10.1016/j.compositesb.2019.107498.
doi: 10.1016/j.compositesb.2019.107498
[60] 周陆陆, 杜建新, 杨荣杰. 硅-磷阻燃剂对热塑性聚氨酯弹性体阻燃性能的影响[J]. 高分子材料科学与工程, 2018, 34(11):79-85.
ZHOU Lulu, DU Jianxin, YANG Rongjie. Effect of Silicon-Phosphorus Flame Retardants on Performances of Polyurethane Elastomer[J]. Polymer Materials Science & Engineering, 2018, 34(11):79-85.
[61] 张小芳, 吴亚容, 邢志奇, 等. 涤纶织物的硅溶胶-凝胶阻燃抗熔滴整理[J]. 印染, 2018, 44(6):1-6.
ZHANG Xiaofang, WU Yarong, XING Zhiqi, et al. Flame retardant and anti-dripping finishing of PET fabric with sol-gel process[J]. China Dyeing & Finishing, 2018, 44(6):1-6.
[62] SEHIC A, TOMSIC B, JERMAN I, et al. Synergistic inhibitory action of P- and Si-containing precursors in sol-gel coatings on the thermal degradation of polyamide 6[J]. Polymer Degradation and Stability, 2016, 128:245-252.
doi: 10.1016/j.polymdegradstab.2016.03.026
[63] 王访鹤, 王锐, 魏丽菲, 等. 层层自组装阻燃改性聚酯织物的制备及其性能[J]. 纺织学报, 2019, 40(11):106-112.
WANG Fanghe, WANG Rui, WEI Lifei, et al. Preparation and properties of layer-by-layer self-assembled flame retardant modified polyester fabrics[J]. Journal of Textile Research, 2019, 40(11):106-112.
[64] 范静静, 王鸿博, 高卫东, 等. 基于电子束辐照加工的织物阻燃功能化研究[J]. 化工新型材料, 2017, 45(1):169-172.
FAN Jingjing, WANG Hongbo, GAO Weidong, et al. Flame retardant study based on electron beam irradiation processing[J]. New Chemical Materials, 2017, 45(1):169-172.
[65] KUNDU C K, WANG W, ZHOU S, et al. A green approach to constructing multilayered nanocoating for flame retardant treatment of polyamide 66 fabric from chitosan and sodium alginate[J]. Carbohydrate Polymers, 2017, 166:131-138.
doi: 10.1016/j.carbpol.2017.02.084
[66] KUNDU C K, WANG X, SONG L, et al. Borate cross-linked layer-by-layer assembly of green polyelectrolytes on polyamide 66 fabrics for flame-retardant treat-ment[J]. Progress in Organic Coatings, 2018, 121:173-181.
doi: 10.1016/j.porgcoat.2018.04.031
[67] KUNDU C K, WANG X, LIU L, et al. Few layer deposition and sol-gel finishing of organic-inorganic compounds for improved flame retardant and hydrophilic properties of polyamide 66 textiles: a hybrid app-roach[J]. Progress in Organic Coatings, 2019, 129:318-326.
doi: 10.1016/j.porgcoat.2019.01.010
[1] ZHANG Chao, JIANG Zhiming, ZHU Shaotong, ZHANG Chenxi, ZHU Ping. Application of hyperbranched phosphoramide in flame retardant finishing of viscose fabrics [J]. Journal of Textile Research, 2021, 42(07): 39-45.
[2] ZHANG Jiaojiao, LI Yuyang, LIU Yun, DONG Chaohong, ZHU Ping. Flame retardant and antibacterial treatments for cotton-viscose blended fabrics [J]. Journal of Textile Research, 2021, 42(07): 31-38.
[3] LIU Ke, CHEN Shuang, XIAO Ru. Preparation and properties of synergistic flame retardant copolyamide 6 fiber with phosphaphenanthrene group [J]. Journal of Textile Research, 2021, 42(07): 11-18.
[4] XU Kai, TIAN Xing, CAO Ying, HE Yaqi, XIA Yanzhi, QUAN Fengyu. Preparation and property of flame retardant polyester/calcium alginate fiber composites [J]. Journal of Textile Research, 2021, 42(07): 19-24.
[5] LIN Shenggen, LIU Xiaohui, SU Xiaowei, HE Ju, REN Yuanlin. Preparation and properties of Lyocell fibers and fabrics modified with new phytic acid based flame retardant [J]. Journal of Textile Research, 2021, 42(07): 25-30.
[6] GU Weiwen, WANG Wenqing, WEI Lifei, SUN Chenying, HAO Dan, WEI Jianfei, WANG Rui. Influence of carbon dots on properties of flame retardant poly(ethylene terephthalate) [J]. Journal of Textile Research, 2021, 42(07): 1-10.
[7] WEN Yufeng, MA Xiaopu, SHENG Fangyuan, ZHU Zhiguo. Preparation of microencapsulated intumescent flame retardant and its use in polylactic acid [J]. Journal of Textile Research, 2021, 42(06): 71-77.
[8] LUO Xiaolei, LI Ziyan, MA Ya'nan, LIU Lin, KRUCINSKA Izabella, YAO Juming. Progress in ecological flame retardant technology for textiles [J]. Journal of Textile Research, 2021, 42(05): 193-202.
[9] LI Yonghe, QU Lingxi, XU Bi, CAI Zaisheng, GE Fengyan. One-step foam finishing of flame retardancy and three-proof finishing for bio-based polytrimethylene terephthalate fabrics [J]. Journal of Textile Research, 2021, 42(04): 8-15.
[10] WANG Huaqing, YAN Hongqiang. Construction of bio-based three-component self-assembled coating for flame retardancy of ramie fabrics [J]. Journal of Textile Research, 2021, 42(04): 132-138.
[11] ZHOU Yingyu, WANG Rui, JIN Gaoling, WANG Wenqing. Research progress of applications of photo-induced surface modification technique in flame retardant fabrics [J]. Journal of Textile Research, 2021, 42(03): 181-189.
[12] MA Ya'nan, SHEN Junyan, LUO Xiaolei, ZHANG Cong, SHANG Xiaolei, LIU Lin, KRUCINSKA Izabella, YAO Juming. Preparation and properties of high efficiency halogen-free flame-retardant cotton fabrics [J]. Journal of Textile Research, 2021, 42(03): 122-129.
[13] ZENG Fanxin, QIN Zongyi, SHEN Yueying, CHEN Yuanyu, HU Shuo. Preparation and flame retardant properties of self-extinguishing cotton fabrics by spray-assisted layer-by-layer self-assembly technology [J]. Journal of Textile Research, 2021, 42(01): 103-111.
[14] XIAO Mengyuan, ZHOU Xinke, ZHANG Jiayue, REN Yuanlin. Research progress of bio-based lignin flame retardant and its applications [J]. Journal of Textile Research, 2020, 41(12): 182-188.
[15] YANG Yaru, SHEN Xiaojun, TANG Bolin, NIU Mei. Halogen-free flame retardant finishing of ultra-high molecular weight polyethylene fiber [J]. Journal of Textile Research, 2020, 41(11): 109-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!