Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (06): 180-188.doi: 10.13475/j.fzxb.20200603809

• Comprehensive Review • Previous Articles     Next Articles

Research progress on bulletproof properties of shear thickening fluid/high performance fiber composites

ZHANG Qianyu1, QIN Zhigang1,2, YAN Ruosi1,2(), JIA Lixia1,2   

  1. 1. College of Textile and Garments, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
    2. Hebei Technology Innovation Center for Textile and Garment, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
  • Received:2020-06-15 Revised:2021-01-10 Online:2021-06-15 Published:2021-06-28
  • Contact: YAN Ruosi E-mail:ruosi.yan@hebust.edu.cn

Abstract:

In order to promote the research and applications of intelligent impact protection materials, this paper reviewed the progress in shear thickening fluid (STF) impregnated high-performance fibers, summarizing their effective mechanical response and energy absorption mechanism upon high velocity impact. The research progress of STF rheological properties, mechanical properties of STF/fiber composites and their anti-ballistic impact mechanisms were reviewed. The selection of STF raw material, the construction principle of composite material system and the preparation method were analyzed. According to the characteristics of ballistic impact process and the reaction mechanisms of STF/fiber composites under high velocity impact, the factors affecting ballistic impact performance were discussed and perspective solutions proposed. The research direction of flexible and intelligent STF/fiber bullet proof composites with high responsiveness is forecasted, and it was made clear that the characterization and evaluation methods of flexible and intelligent STF/fiber bulletproof composites still need improving. The composites based on the three-dimensional self-reinforcing structures, the interfacial bonding between fiber material and STF, the rheological slip and friction characteristics are the key research points in the future.

Key words: shear thickening, bulletproof mechanism, fiber reinforced composite, rheological property, bulletproof property

CLC Number: 

  • TB332

Fig.1

Schematic diagram of STF thickening mechanism"

Fig.2

Rheological curve of single(a)and double(b) shear thickening behavior"

Fig.3

Schematic diagram of bulletproof mechanism of pure fabric(a)and STF/fiber composite(b)"

Tab.1

Configuration and classification of shear thickening fluid"

分散相(质量分数) 分散介质 单相/多相 制备方法 参考文献
气相SiO2(10%~40%) 聚乙二醇(PEG) 单相 高速分散器 [17]
SiO2颗粒(60%、65%) PEG 单相 机械+超声波搅拌 [18-19]
亚微米SiO2(65%) PEG 单相 匀浆器+超声波搅拌 [19]
改性SiO2(50%) PEG 单相 超声波搅拌 [20]
CaCO3(10%~40%) PEG 单相 高速剪切机+超声波搅拌 [21]
玉米淀粉(43%、55%) 单相 超声波搅拌 [7]
SiO2(50%~64%) 离子液体 单相 超声波搅拌 [11]
聚氯乙烯(47%~57%) 邻苯二甲酸二辛酯 单相 机械搅拌 [22]
聚甲基丙烯酸甲酯(51%) PEG 单相 机械搅拌 [23]
SiO2(20%)/SiC(45%) PEG 多相 高速分散器 [24]
SiO2(44%)/CNT(0.8%) PEG 多相 高速剪切机 [25-26]
Si(20%)/SiC(5%、25%、45%) PEG 多相 高速分散器 [27]
SiO2(10%、17.5%、25%)/
硅烷偶联剂(18%、28%、38%)
PEG 多相 超声波搅拌 [28-29]
Si(25%、50%、75%)/CaCO3(75%、50%、25%) PEG 多相 高速剪切机+超声波搅拌 [21]
聚苯乙烯丙烯酸酯(53.5%)/CNT(1%、1.5%) PEG 多相 超声波搅拌 [30]

Tab.2

Structural types of reinforced STF/fiber composites"

纤维名称 纤维名称 织物结构 增强体类型 与STF复合方法 参考文献
芳纶 Kevlar?? 平纹
斜纹
非织造布
叠层
叠层
叠层
浸渍
浸渍
浸渍
[19]
[32]
[11]
非织造布 叠层 涂层 [21]
Kevlar??/铝板 层合板结构 多元复合结构 浸渍 [33]
Kevlar??/玻璃纤维 经编间隔织物 三维结构 填充 [34]
HT-840(Heracron??) 平纹 叠层 浸渍 [35]
平纹 叠层 涂层 [36]
Twaron?? 平纹 叠层 浸渍 [16]
芳纶/碳纤维 三明治蜂窝芯结构 多元复合结构 填充 [37]
芳纶 三维正交 三维结构 浸渍 [38]
超高分子量聚乙烯
(UHMWPE)
UHMWPE 平纹 叠层 浸渍 [39-40]
UHMWPE 单向织物 叠层 浸渍 [41]
UHMWPE/发泡材料 层合板结构 多元复合结构 浸渍 [42]
其他 高模聚丙烯 平纹 叠层 浸渍 [25]
涤纶 经编间隔织物 三维结构 填充 [43-44]

Tab.3

Influencing factors and ways of bulletproof performance"

影响类型 影响因素 影响方式 参考文献
纤维 种类 断裂强度 [49?-51]
线密度 颗粒附着量 [35]
织物 密度 纱线间摩擦力 [35]
组织结构 应力传递 [45-46]
结构 叠层结构(层数/顺序/角度/叠层方式) 强度/材料延伸率/应力传递/整体性 [52,19,16,21]
三明治结构 粒子团聚 [43]
多元复合结构 应力/应变 [48]
三维结构 整体性 [38]
纳米填料 种类 黏度 [19,53]
粒径 临界剪切速率 [54]
含量 粒子团聚数量 [19,53,55]
是否改性 粒子团聚速度 [56]
多类 摩擦力/强度 [40,57-58]
复合方式 浸渍 渗透进内部 [18]
喷涂 附着于表面 [21]
填充 膨胀程度 [37]
环境 温湿度 断裂强力/布朗运动 [59]
PH值 布朗运动
子弹 大小 冲击区域 [2]
形状 冲击区域 [48]
速度 剪切速率 [15,60]
[1] CHEESEMAN B A, BOGETTI T A. Ballistic impact into fabric and compliant composite laminates[J]. Composite Structures, 2003, 61(1):161-173.
doi: 10.1016/S0263-8223(03)00029-1
[2] LU Z, YUAN Z, CHEN X, et al. Evaluation of ballistic performance of STF impregnated fabrics under high velocity impact[J]. Composite Structures, 2019, 227:111208.
doi: 10.1016/j.compstruct.2019.111208
[3] WAGNER N J, BRADY J F. Shear thickening in colloidal dispersions[J]. Physics Today, 2009, 62(10):27-32.
[4] GALINDOROSALES F J, MARTINEZARANDA S, CAMPODEANO L. CorkSTFμfluidics:a novel concept for the development of eco-friendly light-weight energy absorbing composites[J]. Materials & Design, 2015, 82(3):26-34.
[5] MARANZANO B J, WAGNER N J. The effects of particle size on reversible shear thickening of concentrated colloidal dispersions[J]. Journal of Chemical Physics, 2001, 114(23):10514-10527.
doi: 10.1063/1.1373687
[6] HOFFMAN R L. Discontinuous and dilatant viscosity behavior in concentrated suspensions. i. observation of a flow instability[J]. Transactions of the Society of Rheology, 1972, 16(1):155-173.
doi: 10.1122/1.549250
[7] BOSSIS G, BRADY J F. The rheology of Brownian suspensions[J]. Journal of Chemical Physics, 1989, 91(3):1866-1874.
doi: 10.1063/1.457091
[8] FALL A, HUANG N, BERTRAND F, et al. Shear thickening of cornstarch suspensions as a reentrant jamming transition[J]. Physical Review Letters, 2008, 100(1):018301.
doi: 10.1103/PhysRevLett.100.018301
[9] BROWN E. Friction's role in shear thickening[J]. Physics, 2013, 6:125.
[10] GURGEN S, SOFUOGLU M A, KUSHAN M C. Rheological compatibility of multi-phase shear thickening fluid with a phenomenological model[J]. Smart Materials and Structures, 2019, 28(3):035027.
doi: 10.1088/1361-665X/ab018c
[11] QIN J, GUO B, ZHANG L, et al. Soft armor materials constructed with Kevlar fabric and a novel shear thickening fluid[J]. Composites Part B:Engineering, 2020, 183:107686.
doi: 10.1016/j.compositesb.2019.107686
[12] ALI A, SHAKER Z R, KHALINA A, et al. Development of anti-ballistic board from ramie fiber[J]. Polymer-Plastics Technology and Engineering, 2011, 50(6):622-634.
doi: 10.1080/03602559.2010.551381
[13] CARR D J. Failure mechanisms of yarns subjected to ballistic impact[J]. Journal of Materials Science Letters, 1999, 18(7):585-588.
doi: 10.1023/A:1006655301587
[14] CHEN X, ZHU F, WELLS G. An analytical model for ballistic impact on textile based body armour[J]. Composites Part B:Engineering, 2013, 45(1):1508-1514.
doi: 10.1016/j.compositesb.2012.08.005
[15] KHODADADI A, LIAGHAT G, VAHID S, et al. Ballistic performance of Kevlar fabric impregnated with nanosilica/PEG shear thickening fluid[J]. Composites Part B: Engineering, 2019, 162:643-652.
doi: 10.1016/j.compositesb.2018.12.121
[16] ARORA S, MAJUMDAR A, BUTOLA B S. Soft armour design by angular stacking of shear thickening fluid impregnated high-performance fabrics for quasi-isotropic ballistic response[J]. Composite Structures, 2020, 233:111720.
doi: 10.1016/j.compstruct.2019.111720
[17] GURGEN S, YILDIZ T. Stab resistance of smart polymer coated textiles reinforced with particle addi-tives[J]. Composite Structures, 2020, 235:111812.
doi: 10.1016/j.compstruct.2019.111812
[18] KIM Y, KUMAR S K S, PARK Y, et al. High-velocity impact onto a high-frictional fabric treated with adhesive spray coating and shear thickening fluid impregna-tion[J]. Composites Part B-Engineering, 2020, 185:107742.
doi: 10.1016/j.compositesb.2020.107742
[19] BAJYA M, MAJUMDAR A, BUTOLA B S, et al. Design strategy for optimising weight and ballistic performance of soft body armour reinforced with shear thickening fluid[J]. Composites Part B: Engineering, 2020, 183:107721.
doi: 10.1016/j.compositesb.2019.107721
[20] SAHOO S K, MISHRA S, ISLAM E, et al. Tuning shear thickening behavior via synthesis of organically modified silica to improve impact resistance of Kevlar fabric[J]. Materials Today Communications, 2020, 23:100892.
doi: 10.1016/j.mtcomm.2020.100892
[21] AVILA A F, DE OLIVEIRA A M, LEAO S G, et al. Aramid fabric/nano-size dual phase shear thickening fluid composites response to ballistic impact[J]. Composites Part A:Applied Science and Manufacturing, 2018, 112(4):68-74.
[22] EGRES R G, NETTESHEIM F, WAGNER N J. Rheo-SANS investigation of acicular-precipitated calcium carbonate colloidal suspensions through the shear thickening transition[J]. Journal of Rheology, 2006, 50(5):685-709.
doi: 10.1122/1.2213245
[23] CHENG X, MCCOY J, ISRAELACHVILI J N, et al. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions[J]. Science, 2011, 333(6047):1276-1279.
doi: 10.1126/science.1207032
[24] GURGEN S. Numerical modeling of fabrics treated with multi-phase shear thickening fluids under high velocity impacts[J]. Thin-walled Structures, 2020, 148:106573.
doi: 10.1016/j.tws.2019.106573
[25] HASANZADEH M, MOTTAGHITALAB V, BABAEI H, et al. The influence of carbon nanotubes on quasi-static puncture resistance and yarn pull-out behavior of shear-thickening fluids (STFs) impregnated woven fabrics[J]. Composites Part A:Applied Science and Manufacturing, 2016, 88(2):63-71.
[26] CHEN Q, LIU M, XUAN S, et al. Shear dependent electrical property of conductive shear thickening fluid[J]. Materials & Design, 2017, 121:92-100.
[27] GÜRGEN S, KUŞHAN M C. The ballistic performance of aramid based fabrics impregnated with multi-phase shear thickening fluids[J]. Polymer Testing, 2017, 64:296-306.
doi: 10.1016/j.polymertesting.2017.11.003
[28] SANTOS T F D, SANTOS C M D S, AQUINO M S D, et al. Statistical study of performance properties to impact of Kevlar ® woven impregnated with Non-Newtonian Fluid (NNF) [J]. Journal of materials research and technology, 2020.
[29] SANTOS T F, SANTOS C M S, AQUINO M S, et al. Influence of silane coupling agent on shear thickening fluids (STF) for personal protection[J]. Journal of Materials Research and Technology, 2019, 8(5):4032-4039.
doi: 10.1016/j.jmrt.2019.07.013
[30] CAO S, PANG H, ZHAO C, et al. The CNT/PSt-EA/Kevlar composite with excellent ballistic perfor-mance[J]. Composites Part B:Engineering, 2020, 185:107793.
doi: 10.1016/j.compositesb.2020.107793
[31] POLANSKI M, BYSTRZYCKI J. The influence of different additives on the solid-state reaction of magnesium hydride (MgH 2) with Si [J]. International Journal of Hydrogen Energy, 2009, 34(18):7692-7699.
doi: 10.1016/j.ijhydene.2009.06.002
[32] 朱文佳, 汪泽幸, 祝振威, 等. STF/Kevlar复合材料的制备与冲击撕裂性能[J]. 产业用纺织品, 2018, 36(12):41-44.
ZHU Wenjia, WANG Zexing, ZHU Zhenwei, et al. Preparation and impact tearing performance of STF/Kevlar composites[J]. Technical Textiles, 2018, 36(12):41-44.
[33] HARO E E, ODESHI A G, SZPUNAR J A. The energy absorption behavior of hybrid composite laminates containing nano-fillers under ballistic impact[J]. International Journal of Impact Engineering, 2016, 96:11-22.
doi: 10.1016/j.ijimpeng.2016.05.012
[34] CHATTERJEE V A, VERMA S K, BHATTACHARJEE D, et al. Enhancement of energy absorption by incorporation of shear thickening fluids in 3D-mat sandwich composite panels upon ballistic impact[J]. Composite Structures, 2019, 225:111148.
doi: 10.1016/j.compstruct.2019.111148
[35] KIM Y, PARK Y, CHA J, et al. Behavior of shear thickening fluid (STF) impregnated fabric composite rear wall under hypervelocity impact[J]. Composite Structures, 2018, 204:52-62.
doi: 10.1016/j.compstruct.2018.07.064
[36] NA W, AHN H, HAN S, et al. Shear behavior of a shear thickening fluid-impregnated aramid fabrics at high shear rate[J]. Composites Part B: Engineering, 2016, 97:162-175.
doi: 10.1016/j.compositesb.2016.05.017
[37] FU K, WANG H, CHANG L, et al. Low-velocity impact behaviour of a shear thickening fluid (STF) and STF-filled sandwich composite panels[J]. Composites Science and Technology, 2018, 165:74-83.
doi: 10.1016/j.compscitech.2018.06.013
[38] MAJUMDAR A, LAHA A, BHATTACHARJEE D, et al. Tuning the structure of 3D woven aramid fabrics reinforced with shear thickening fluid for developing soft body armour[J]. Composite Structures, 2017, 178:415-425.
doi: 10.1016/j.compstruct.2017.07.018
[39] ARORA S, MAJUMDAR A, BUTOLA B S. Structure induced effectiveness of shear thickening fluid for modulating impact resistance of UHMWPE fabrics[J]. Composite Structures, 2019, 210:41-48.
doi: 10.1016/j.compstruct.2018.11.028
[40] 陆振乾, 许玥. 剪切增稠液浸渍超高分子量聚乙烯织物的防锥刺性能[J]. 纺织学报, 2018, 39(10):58-62,67.
LU Zhenqian, XU Yue, Study on stab-resistant performance of shear thickening fluids impregnated ultra-high-molecular-weight polyethylene fabric[J]. Journal of Textile Research, 2018, 39(10):58-62,67.
[41] 王天坤, 俞科静, 钱坤, 等. 2D、3D织物结构对STF/UHMWPE复合材料高速冲击性能影响的研究[J]. 化工新型材料, 2016, 44(8):108-109,112.
WANG Tiankun, YU Kejing, QIAN Kun, et al. Influence of 2D and 3D fabric structures on the high-speed impact property of STF/UHMWPE material[J]. New Chemical Materials, 2016, 44(8):108-109,112.
[42] ASIJA N, CHOUHAN H, AMARE G S, et al. Impact response of shear thickening fluid (STF) treated ultra high molecular weight poly ethylene composites - study of the effect of STF treatment method[J]. Thin-Walled Structures, 2018, 126:16-25.
doi: 10.1016/j.tws.2017.04.025
[43] 陆振乾, 吴利伟, 孙宝忠, 等. 经编间隔织物增强柔性复合材料冲击性能[J]. 复合材料学报, 2014, 31(5):1306-1311.
LU Zhenqian, WU Liwei, SUN Baozhong, et al. Impact properties of warp knitted spacer fabric reinforced flexible composites[J]. Acta Materiae Compositae Sinica, 2014, 31(5):1306-1311.
[44] LU Z, WU L, GU B, et al. Numerical simulation of the impact behaviors of shear thickening fluid impregnated warp-knitted spacer fabric[J]. Composites Part B: Engineering, 2015, 69:191-200.
doi: 10.1016/j.compositesb.2014.10.003
[45] LAHA A, MAJUMDAR A. Interactive effects of p-aramid fabric structure and shear thickening fluid on impact resistance performance of soft armor mate-rials[J]. Materials & Design, 2016, 89:286-293.
[46] OZDEMIR H, MERT E. The effects of fabric structural parameters on the tensile, bursting, and impact strengths of cellular woven fabrics[J]. Journal of The Textile Institute, 2013, 104(3):330-338.
doi: 10.1080/00405000.2012.725521
[47] XU C, WANG Y, WU J, et al. Anti-impact response of Kevlar sandwich structure with silly putty core[J]. Composites Science and Technology, 2017, 153:168-177.
doi: 10.1016/j.compscitech.2017.10.019
[48] HARO E E, SZPUNAR J A, ODESHI A G. Ballistic impact response of laminated hybrid materials made of 5086-H32 aluminum alloy, epoxy and Kevlar ® fabrics impregnated with shear thickening fluid [J]. Composites Part A: Applied Science and Manufacturing, 2016, 87:54-65.
doi: 10.1016/j.compositesa.2016.04.007
[49] LASSIG T R, BAGUSAT F, MAY M, et al. Analysis of the shock response of UHMWPE composites using the inverse planar plate impact test and the shock reverberation technique[J]. International Journal of Impact Engineering, 2015, 86:240-248.
doi: 10.1016/j.ijimpeng.2015.08.010
[50] FAZAL A, FANCEY K S. UHMWPE fibre-based composites: prestress-induced enhancement of impact properties[J]. Composites Part B: Engineering, 2014, 66,1-6.
doi: 10.1016/j.compositesb.2014.04.031
[51] HU D, ZHANG Y, SHEN Z, et al. Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems[J]. Ceramics International, 2017, 43(13):10368-10376.
doi: 10.1016/j.ceramint.2017.05.071
[52] STOPFORTH R, ADALI S. Experimental study of bullet-proofing capabilities of Kevlar, of different weights and number of layers, with 9 mm projec-tiles[J]. Defence Technology, 2019, 15(2):186-192.
doi: 10.1016/j.dt.2018.08.006
[53] MAWKHLIENG U, MAJUMDAR A. Deconstructing the role of shear thickening fluid in enhancing the impact resistance of high-performance fabrics[J]. Composites Part B: Engineering, 2019, 175,107167.
doi: 10.1016/j.compositesb.2019.107167
[54] XU Y, CHEN X, WANG Y, et al. Stabbing resistance of body armour panels impregnated with shear thickening fluid[J]. Composite Structures, 2017, 163:465-473.
doi: 10.1016/j.compstruct.2016.12.056
[55] LI W, XIONG D, ZHAO X, et al. Dynamic stab resistance of ultra-high molecular weight polyethylene fabric impregnated with shear thickening fluid[J]. Materials & Design, 2016, 102:162-167.
[56] 刘星, 霍俊丽, 李婷婷, 等. 等离子体处理二氧化硅对剪切增稠液体含浸芳纶织物防刺性能的影响[J]. 材料导报, 2019, 33(16):2799-2803.
LIU Xing, HUO Junli, LI Tingting, et al. Effect of plasma-treated silica on the stab resistance of shear thickening fluid impregnated aramid fabrics[J]. Materials Reports, 2019, 33(16):2799-2803.
[57] GüRGEN S, KUŞHAN M C. The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives[J]. Composites Part A: Applied Science and Manufacturing, 2017, 94:50-60.
doi: 10.1016/j.compositesa.2016.12.019
[58] GURGEN S, KUSHAN M C, LI W. The effect of carbide particle additives on rheology of shear thickening fluids[J]. Korea-Australia Rheology Journal, 2016, 28(2):121-128.
doi: 10.1007/s13367-016-0011-x
[59] FU K, WANG H, ZHANG Y X, et al. Rheological and energy absorption characteristics of a concentrated shear thickening fluid at various temperatures[J]. International Journal of Impact Engineering, 2020, 139:103525.
doi: 10.1016/j.ijimpeng.2020.103525
[60] NUNES S G, SCAZZOSI R, MANES A, et al. Influence of projectile and thickness on the ballistic behavior of aramid composites: experimental and numerical study[J]. International Journal of Impact Engineering, 2019, 132:103307.
doi: 10.1016/j.ijimpeng.2019.05.021
[61] GURGEN S, CELIK O N, KUSHAN M C. Tribological behavior of UHMWPE matrix composites reinforced with PTFE particles and aramid fibers[J]. Composites Part B:Engineering, 2019, 173:106949.
doi: 10.1016/j.compositesb.2019.106949
[62] TOYEN D, WIMOLMALA E, SOMBATSOMPOP N, et al. Sm 2O 3/UHMWPE composites for radiation shielding applications: mechanical and dielectric properties under gamma irradiation and thermal neutron shielding [J]. Radiation Physics and Chemistry, 2019, 164:108366.
doi: 10.1016/j.radphyschem.2019.108366
[63] KARTIKEYA K, CHOUHAN H, AHMED A, et al. Determination of tensile strength of UHMWPE fiber-reinforced polymer composites[J]. Polymer Testing, 2020, 82:106293.
doi: 10.1016/j.polymertesting.2019.106293
[64] PARK J L, YOON B I, PAIK J G, et al. Ballistic performance of p-aramid fabrics impregnated with shear thickening fluid: part I: Effect of laminating sequ-ence[J]. Textile Research Journal, 2012, 82(6):527-541.
doi: 10.1177/0040517511420753
[65] XU Y, GONG X, PENG C, et al. Shear thickening fluids based on additives with different concentrations and molecular chain lengths[J]. Chinese Journal of Chemical Physics, 2010, 23(3):342-346.
doi: 10.1088/1674-0068/23/03/342-346
[1] LI Danyang, WANG Rui, LIU Xing, ZHANG Shujie, XIA Zhaopeng, YAN Ruosi, DAI Erqing. Effect of shear thickening fluid on quasi-static stab resistance of aramid-based soft armor materials [J]. Journal of Textile Research, 2020, 41(03): 106-112.
[2] ZHAO Yinghui, GU Yingchun, HU Fei, LIN Jiayou, YE Lanlin, LI Jingjing, CHEN Sheng. Progress review on research of aromatic polyamide nanofiber composites [J]. Journal of Textile Research, 2020, 41(01): 184-189.
[3] PAN Weinan, XIANG Hengxue, ZHAI Gongxun, NI Mingda, SHEN Jiaguang, ZHU Meifang. Influence of relative molecular weight of copolyamide 6/66 on crystallization and rheological properties thereof [J]. Journal of Textile Research, 2019, 40(09): 8-14.
[4] WEI Haijiang, JIANG Li, ZHANG Shunhua. Preperation and properties of heat-resistant phase change wax/polypropylene blends [J]. Journal of Textile Research, 2019, 40(06): 8-13.
[5] . Study on stab-resistant performance of shear thickening fluids impregnated ultra-high-molecular-weight polyethylene fabric [J]. Journal of Textile Research, 2018, 39(10): 58-62.
[6] . Preparation and properties of novel modified polyester [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 22-26.
[7] . Permeation behavior and permeability of warp-knitted quadri-axial glass fiber fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 49-56.
[8] . Preparation and its sizing properties of starch-poly(methyl aceylate) size catalyzed by horseradish peroxidase [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(06): 69-74.
[9] . Shear rheological properties of SiO2 coated TiO2 particles and polypropylene blend [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(08): 6-10.
[10] . Preparation and properties of shear thickening fluid [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(8): 5-0.
[11] YU QIN. Rheological property of cellulose diacetate spinning dope [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(6): 8-12.
[12] KONG Xiang-Yong, MIAO Xu-Hong. Stab-resistant properties of multi-axial warp knitted fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(7): 58-63.
[13] ZHANG Shunhua;LI Huiyan;YANG Fengchun. Structure and rheological behavior of PET/WSPET blend [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(6): 7-10.
[14] SUN Fu~;ZHANG Guoqing~;SUN Yanqiu~. Properties of conducting carbon black/polyester composites [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(10): 9-11.
[15] ZHANG Rui-wen;LIU Chi-qian;CHENG Bo-wen;XIAO Chang-fa. Spinnability of soybean protein/viscose blended solution [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(6): 58-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!