Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (04): 74-79.doi: 10.13475/j.fzxb.20200603906

• Textile Engineering • Previous Articles     Next Articles

Influence of ply number of cotton yarns on fabrics performance

ZUO Yajun1, CAI Yun2, WANG Lei1, GAO Weidong1()   

  1. 1. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    2. Wuxi No.1 Cotton Textiles Group Co., Ltd., Wuxi, Jiangsu 214000, China
  • Received:2020-06-15 Revised:2020-12-22 Online:2021-04-15 Published:2021-04-20
  • Contact: GAO Weidong E-mail:gaowd3@163.com

Abstract:

In order to study the effect of the ply number of cotton yarns on the mechanical properties and shape retention of woven fabrics, single, double, triple and quadruple plied yarns with the same fineness were used for making fabrics with appropriate warp and weft densities, using the plain, left twill and satin weaves. The tensile properties, tear strength, tensile elasticity, wrinkle recovery, drapeability and bendability of the fabrics were tested and analyzed. The results show that the fabric with 3-ply yarn has a higher breaking strength and tear strength, the fabric with 4-ply yarn has a higher elongation at break, and the fabric with 2-ply yarn has a greater tensile elastic recovery rate. For the plain weave fabrics, the fabric made from the 2-ply yarn demonstrated better wrinkle recovery than that from single-ply yarn. The wrinkle recovery of the twill and satin fabrics deteriorates as the yarn ply number increases. The plain woven fabric made from 2-ply yarns have good drape, but not as good as the twill and satin fabrics, and fabric using single-ply yarn has better bending properties than other fabrics.

Key words: cotton yarn, ply number, fabric weave, mechanical property, shape retention

CLC Number: 

  • TS101.923

Tab.1

Specifications of fabric samples"

织物编号 线密度 组织
经纱 纬纱
A1 9.6 tex 9.6 tex 平纹
A2 9.6 tex 9.6 tex 左斜
A3 9.6 tex 9.6 tex 缎纹
B1 4.8 tex×2 4.8 tex×2 平纹
B2 4.8 tex×2 4.8 tex×2 左斜
B3 4.8 tex×2 4.8 tex×2 缎纹
C1 3.2 tex×3 3.2 tex×3 平纹
C2 3.2 tex×3 3.2 tex×3 左斜
C3 3.2 tex×3 3.2 tex×3 缎纹
D1 2.4 tex×4 2.4 tex×4 平纹
D2 2.4 tex×4 2.4 tex×4 左斜
D3 2.4 tex×4 2.4 tex×4 缎纹

Tab.2

Yarn performance"

合股数 线密度 断裂强力/cN 单纱断裂强度/
(cN·tex-1)
股线断裂强度/
(cN·tex-1)
单纱断裂
伸长率/%
股线断裂
伸长率/%
条干CV值/%
单纱 9.6 tex 264.96 27.3 5.73 11.60
双股线 4.8 tex×2 270.15 24.9 27.85 5.50 5.85 11.13
3股线 3.2 tex×3 274.60 22.4 28.31 5.30 6.21 10.27
4股线 2.4 tex×4 268.68 18.8 27.70 4.80 6.81 10.21

Tab.3

Fabric breaking strength and elongation at break"

织物编号 断裂强力/N 断裂强力CV值/% 断裂伸长率/% 断裂伸长率CV值/%
经向 纬向 经向 纬向 经向 纬向 经向 纬向
A1 1 011.30 420.74 2.0 2.6 15.17 10.17 2.5 1.3
B1 1 022.72 522.16 2.0 1.6 16.31 9.76 1.0 1.4
C1 1 023.58 551.68 4.8 4.4 17.53 11.55 3.4 2.2
D1 888.56 540.16 3.2 3.3 18.08 12.60 1.2 2.0
A2 817.96 403.22 8.1 3.6 8.60 16.65 3.3 1.8
B2 1 130.12 386.30 6.5 5.9 7.95 15.78 4.8 1.1
C2 1 153.76 389.47 5.7 6.3 10.62 16.40 2.5 1.7
D2 1 112.62 432.50 2.3 4.9 11.18 16.56 3.6 2.3
A3 1 154.26 461.04 6.8 3.8 9.17 17.22 2.0 1.2
B3 1 140.96 398.46 2.9 4.9 8.59 17.21 3.7 1.2
C3 1 165.54 411.56 4.7 3.2 10.33 17.80 2.0 2.2
D3 1 116.30 386.16 2.8 3.1 10.52 19.44 1.9 1.0

Fig.1

Warp (a) and weft (b) tear strength of fabric"

Fig.2

Warp (a) and weft (b) elastic recovery rate of fabric"

Fig.3

Fabric wrinkle recovery angle"

Tab.4

Drapability of fabric%"

织物编号 静态悬垂系数 动态悬垂系数
A1 62.06 63.80
B1 55.85 57.41
C1 58.50 59.52
D1 65.93 66.53
A2 42.90 45.36
B2 44.68 46.90
C2 40.51 42.99
D2 36.60 39.54
A3 40.96 43.28
B3 43.72 45.95
C3 40.49 43.04
D3 40.93 43.54

Fig.4

Warp (a) and weft (b) bending length of fabric"

[1] 郁崇文. 纺纱学[M]. 北京: 中国纺织出版社, 2009: 249-252.
YU Chongwen. Spinning science [M]. Beijing: China Textile & Apparel Press, 2009: 249-252.
[2] 樊理山, 周彬. 正反捻双股线结构及其拉伸性能的研究[J]. 棉纺织技术, 2011,39(11):21-24.
FAN Lishan, ZHOU Bin. Study on the structure and tensile properties of double twisted and reverse twisted yarn[J]. Cotton Textile Technology, 2011,39(11):21-24.
[3] 申美丽, 徐伯俊, 刘新金, 等. 纱线捻度对纯棉机织物保形性能的影响研究[J]. 现代纺织技术, 2019,27(6):47-51.
SHEN Meili, XU Bojun, LIU Xinjin, et al. Research on the influence of yarn twist on the shape retention properties of pure cotton woven fabrics[J]. Advanced Textile Technology, 2019,27(6):47-51.
[4] 宋均燕, 赵阳, 何小东, 等. 集聚纺股线捻系数与强伸性能的关系[J]. 棉纺织技术, 2017,45(10):16-19.
SONG Junyan, ZHAO Yang, HE Xiaodong, et al. The relationship between the twist coefficient of agglomerated yarn and its strength and elongation[J]. Cotton Textile Technology, 2017,45(10):16-19.
[5] GOURKAR P, MALU U, 胡悦. 双股线捻向对纱线/织物拉伸性能的影响[J]. 国际纺织导报, 2018,46(5):16-18,20.
GOURKAR P, MALU U, HU Yue. The effect of twisting of double strands on the tensile properties of yarn/fabric[J]. Melliand China, 2018,46(5):16-18,20.
[6] 武昊岩, 谢光银, 张一心. 捻度与合股数对纱与纱磨损耐磨性的影响[J]. 纺织科技进展, 2019(5):40-42,56.
WU Haoyan, XIE Guangyin, ZHANG Yixin. Effects of twist and ply number on yarn and yarn wear and wear resistance[J]. Progress in Textile Science & Technology, 2019 (5):40-42,56.
[7] LIN Jia-horng, LIN Mei-chen, LI Ting-ting, et al. Polyvinyl alcohol yarn prepared into a biodegradable vascular stent: effects of plied number, twist factor on yarn structure and mechanical properties[C]// Asia-Pacific Engineering and Technology Conference. Hongkong: APETC, 2017: 83-88.
[8] 王蕾, 刘建立, 潘如如, 等. 基于视频序列的织物折皱回复角动态测量[J]. 纺织学报, 2013,34(2):55-60.
WANG Lei, LIU Jianli, PAN Ruru, et al. Dynamic measurement of fabric wrinkle recovery angle based on video sequence[J]. Journal of Textile Research, 2013,34(2):55-60.
[9] 黄伟, 汪军. 双股线几何强力模型的建立及其影响因素[J]. 纺织学报, 2015,36(2):25-29, 34.
HUANG Wei, WANG Jun. The establishment of double strand geometric strength model and its influencing factors[J]. Journal of Textile Research, 2015,36(2):25-29, 34.
[10] 陈彩云. 仿丝绸处理对涤纶织物悬垂性的影响[J]. 丝绸, 2018,55(9):15-20.
CHEN Caiyun. Influence of silk-like treatment on drape of polyester fabric[J]. Journal of Silk, 2018,55(9):15-20.
[1] LU Zhenqian, YANG Yaru, XUN Yong. Research review of fiber effect on properties of cement-based composite [J]. Journal of Textile Research, 2021, 42(04): 177-183.
[2] TANG Qianhui, WANG Lei, GAO Weidong. Detection of fabric shape retention based on image processing [J]. Journal of Textile Research, 2021, 42(03): 89-94.
[3] HUANG Di, LI Fang, LI Gang. Preparation and performance of polyester/silk woven heart valve [J]. Journal of Textile Research, 2021, 42(02): 74-79.
[4] SUN Yabo, LI Lijun, MA Chongqi, WU Zhaonan, QIN Yu. Simulation on tensile properties of tubular weft knitted fabrics based on ABAQUS [J]. Journal of Textile Research, 2021, 42(02): 107-112.
[5] SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77.
[6] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan/polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[7] LIU Shuqiang, WU Jie, WU Gaihong, YIN Xiaolong, LI Fu, ZHANG Man. Surface modification of basalt fiber using nano-SiO2 [J]. Journal of Textile Research, 2020, 41(12): 37-41.
[8] JIN Yao, CAI Tenghao, LI Caiman, HU Yali, LU Jialiang, WANG Yi. Application of chair-tiling approach for fabric weave design [J]. Journal of Textile Research, 2020, 41(09): 54-58.
[9] PANG Yali, MENG Jiayi, LI Xin, ZHANG Qun, CHEN Yankun. Preparation of graphene fibers by wet spinning and fiber characterization [J]. Journal of Textile Research, 2020, 41(09): 1-7.
[10] ZHAN Xiaoqing, LI Fengyan, ZHAO Jian, LI Haiqiong. Thermal mechanical stability of ultrahigh molecular weight polyethylene fiber [J]. Journal of Textile Research, 2020, 41(08): 9-14.
[11] ZHANG Zhuhui, ZHANG Diantang, QIAN Kun, XU Yang, LU Jian. Weaving process and off-axial tensile mechanical properties of wide-angle woven fabric [J]. Journal of Textile Research, 2020, 41(08): 27-31.
[12] LI Ruiqing, WANG Wei, WEI Bingju, ZHOU Changwen, ZHANG Shutao. Sulfur black dyeing process with environment friendly reducing agent [J]. Journal of Textile Research, 2020, 41(08): 50-54.
[13] LIU Xi, WANG Dong, ZHANG Liping, LI Min, FU Shaohai. Effect of low refractive resin on structure and properties of spun-dyed viscose fibers [J]. Journal of Textile Research, 2020, 41(07): 9-14.
[14] DING Yongsheng, DAI Yamin, ZHONG Yi, XU Hong, MAO Zhiping, ZHANG Linping, CHEN Zhize. Dyeing kinetics of reactive dye on cotton yarn in Pickering emulsion system [J]. Journal of Textile Research, 2020, 41(07): 101-108.
[15] LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!