Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (05): 84-89.doi: 10.13475/j.fzxb.20200605506

• Textile Engineering • Previous Articles     Next Articles

Characterization of shock wave propagation in ceramic reinforced weft-knitted biaxial multilayer yarnlining fabric and woven fabrics composites

QIAO Cancan1,2, JIANG Yaming1,2, QI Yexiong1,2(), LIN Wenni1,2, ZHANG Ye1,2   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
  • Received:2020-06-18 Revised:2021-02-13 Online:2021-05-15 Published:2021-05-20
  • Contact: QI Yexiong E-mail:qiyexiong@tiangong.edu.cn

Abstract:

In order to characterize the propagation of shock waves in composite materials, a composite was prepared by compounding the weft-knitted biaxial (MBWK) multi-layer lining fabric, woven fabric and a ceramic layer alternately with unsaturated polyester resin. The hammer impact test was carried out on the composite material specimens, and the crack propagation and fragmentation of the ceramic sheets were studied after the specimen was impact damaged. The propagation of impact stress in the composite materials was explored with different structures, revealing the stress wave propagation mechanism of the MBWK fabric reinforced composites upon impact loading. The experimental results show that during the impact of the composite materials, delamination of the materials occurs. The existence of the transverse stress wave is manifested on the surface of the ceramic material, which causes ring damage to the ceramic layer, and the longitudinal wave propagates along the thickness of the material, and the layers of the composite material, causing different mechanisms of energy absorption for each layer. At the same time, under the same process conditions, the damage area and crack number of woven composite are small, which indicates that the woven composite has more impact energy absorption and better impact resistance.

Key words: composite material, weft-knitted biaxial fabric, ceramic sheet, impact characterization, crack propagation

CLC Number: 

  • TB332

Fig.1

Schematic diagram of ceramic reinforced MBWK fabric composites"

Tab.1

Composition content of ceramic reinforced MBWK fabric composite plates%"

材料板编号 织物质量分数 陶瓷质量分数 树脂质量分数
1* 25.39 52.06 22.55
2* 26.07 53.45 20.48
3* 24.61 50.45 24.94
4* 24.90 51.05 24.05
5* 24.94 51.13 23.93

Fig.2

Schematic diagram of ceramic reinforced woven fabric composites"

Tab.2

Composition content of ceramic reinforced woven fabric composite plates%"

材料板编号 织物质量分数 陶瓷质量分数 树脂质量分数
1# 23.57 60.49 15.94
2# 25.02 64.23 10.75

Tab.3

Experimental parameter setting"

试样类型 预设冲击
能量/J
锤体质
量/kg
冲击高
度/mm
陶瓷增强MBWK织物复合材料 18 2.0 918.7
陶瓷增强机织物复合材料 12 3.5 347.6

Fig.3

Overall failure morphology of ceramic reinforced MBWK fabric composites(a) and woven ceramic reinforced composites (b) after impact"

Fig.4

Disassembly and characterization of composite materials"

Fig.5

Characterization of shock waves propagation in ceramic reinforced MBWK fabric composites. (a) First layer;(b) Second layer; (c) Third layer; (d) Fourth layer; (e) Fifth layer"

Fig.6

Characterization of shock waves propagation in ceramic reinforced woven fabric composites. (a) First layer;(b) Second layer; (c) Third layer; (d) Fourth layer"

[1] 邓文波, 习小斌, 冯万喜. 复合材料主要应用领域现状与发展趋势[J]. 黑龙江科技信息, 2017(7):84.
DENG Wenbo, XI Xiaobin, FENG Wanxi. Current situation and development trend of main application fields of composite materials[J]. Heilongjiang Science and Technology Information, 2017 ( 7):84.
[2] 邬志华, 曾竟成, 刘钧. 高速列车及其用复合材料的发展[J]. 材料导报, 2011,25(21):108-114.
WU Zhihua, ZENG Jingcheng, LIU Jun. Development of composite materials for high speed trains[J]. Materials Guide, 2011,25(21):108-114.
[3] 崔童, 王铮. 高速列车内饰件轻量化设计[J]. 科技创新导报, 2013(8):42-44.
CUI Tong, WANG Zheng. Lightweight design of high speed train interior trim[J]. Science and Technology Innovation Guide, 2013 (8):42-44.
[4] 李世涛, 赵长龙. 复合材料在高速列车上的应用:大型、复杂、通用[J]. 中国战略新兴产业, 2014(15):88-91.
LI Shitao, ZHAO Changlong. Application of composite materials in high speed trains: large, complex and general[J]. China's Strategic Emerging Industries, 2014 (15):88-91.
[5] 张佐光, 梁志勇, 张大兴, 等. 防弹复合材料[J]. 航空制造工程, 1997(4):9-11.
ZHANG Zuoguang, LIANG Zhiyong, ZHANG Daxing, et al. Bulletproof composite materials[J]. Aeronautical Manufacturing Engineering, 1997 (4):9-11.
[6] 薛书凯, 陈建梅, 成敏苏. 装甲车用新型高性能防弹复合材料技术研究[J]. 复合材料科学与工程, 2012(4):80-83.
XUE Shukai, CHEN Jianmei, CHENG Minsu. Research on new high performance bulletproof composite materials for armored vehicles[J]. Composites Science and Engineering, 2012 (4):80-83.
[7] 陈娟, 彭蜀晋. 现代防弹材料发展概观[J]. 化学教育, 2018,39(8):7-12.
CHEN Juan, PENG Shujin. Overview of the development of modern bulletproof materials[J]. Chemical Education, 2018,39(8):7-12.
[8] 邵磊, 余新泉, 于良. 防弹纤维复合材料在装甲防护上的应用[J]. 高科技纤维与应用, 2007(2):31-34.
SHAO Lei, YU Xinquan, YU Liang. Application of bulletproof fiber composite material in armor protection[J]. High Tech Fiber and Application, 2007 (2):31-34.
[9] 高原, 姚凯. 军用车辆装甲防护材料与技术发展的研究[J]. 机电产品开发与创新, 2015,28(2):10-12.
GAO Yuan, YAO Kai. Research on the development of armor protection materials and technology for military vehicles[J]. Development and Innovation of Electromech-Anical Products, 2015,28(2):10-12.
[10] 陈智勇, 程广伟, 徐颖强, 等. 防弹车辆用陶瓷复合装甲研究[J]. 中国陶瓷, 2018,54(11):1-8.
CHEN Zhiyong, CHENG Guangwei, XU Yingqiang, et al. Research on ceramic composite armor for bulletproof vehicles[J]. China Ceramics, 2018,54(11):1-8.
[11] 肖军. 个体防护装备用高新技术纤维[J]. 现代橡胶技术, 2015,41(2):10-16.
XIAO Jun. High tech fiber for personal protective equipment[J]. Modern Rubber Technology, 2015,41(2):10-16.
[12] 姚磊江, 王景深, 张沥, 等. 二维C/SiC复合材料低速冲击损伤特性的表征研究[J]. 机械强度, 2013,35(2):148-151.
YAO Leijiang, WANG Jingshen, ZHANG Li, et al. Characterization of damage characteristics of 2D C/SiC Composites under low velocity impact[J]. Mechanical Strength, 2013,35(2):148-151.
[13] 方丹丹, 阎建华. 三维五向编织玻璃纤维/碳纤环氧树脂混杂复合材料冲击性能和冲击后弯曲性能研究[J]. 复合材料科学与工程, 2014(7):57-61.
FANG Dandan, YAN Jianhua. Study on the impact and post impact bending properties of three-dimensional five direction braided glass fiber / carbon fiber epoxy hybrid composites[J]. Composites Science and Engineering, 2014 ( 7):57-61.
[14] 许国栋, 李地红, 吴昊宇, 等. 模糊评价法表征复合材料层合板低能量冲击行为[J]. 材料导报, 2018,32(32):573-576.
XU Guodong, LI Dihong, WU Haoyu, et al. Characterizat-ion of low energy impact behavior of composite laminates by fuzzy evaluation method[J]. Materials Guide, 2018,32(32):573-576.
[15] 许国栋, 李地红, 吴昊宇, 等. 贴近度法表征复合材料层合板低能量冲击行为[J]. 复合材料科学与工程, 2019(2):45-50.
XU Guodong, LI Dihong, WU Haoyu, et al. Characterizat-ion of low energy impact behavior of composite laminates by proximity method[J]. Composites Science and Engineering, 2019 ( 2):45-50.
[16] 张福乐, 林兰天, 薛亚静, 等. 低速冲击下纺织复合材料应力波平面传递研究[J]. 棉纺织技术, 2015,43(6):1-5.
ZHANG Fule, LIN Lantian, XUE Yajing, et al. Research on stress wave plane transfer of textile composites under low velocity impact[J]. Cotton Textile Technology, 2015,43(6):1-5.
[17] POTEL C, CHOTARD T, BELLEVAL J F, et al. Characterization of composite materials by ultrasonic methods: modelization and application to impact damage[J]. Composites Part B-Engineering, 1998,29(2):159-169.
doi: 10.1016/S1359-8368(97)00006-1
[18] 刘晓宇, 李哲, 翟奋楼. 平纹芳纶织物/环氧树脂复合材料抗冲击性能研究[J]. 航空制造技术, 2018,61(7):89-92.
LIU Xiaoyu, LI Zhe, ZHAI Fenlou. Study on impact resist-ance of plain aramid fabric/epoxy resin composites[J]. Aviation Manufacturing Technology, 2018,61(7):89-92.
[19] ZHU J, LI Y, PENG Q, et al. Stress wave propagation across jointed rock mass under dynamic extension and its effect on dynamic response and supporting of underground opening[J]. Tunnelling and Underground Space Technology, 2021,108(3):59-63.
[1] SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77.
[2] LÜ Qingtao, ZHAO Shibo, DU Peijian, CHEN Li. Research status of fatigue properties characterization and analysis methods of resin matrix composites [J]. Journal of Textile Research, 2021, 42(01): 181-189.
[3] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
[4] LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173.
[5] CHEN Lifu, YU Weidong. Stab resistance of composites with synthetic diamond filled polyimide resin matrix [J]. Journal of Textile Research, 2020, 41(05): 38-44.
[6] LI Peng, WAN Zhenkai, JIA Minrui. Damage monitoring of composite materials based on twist energy of carbon nanotube yarns [J]. Journal of Textile Research, 2020, 41(04): 58-63.
[7] ZHANG Hengyu, ZHANG Xiansheng, XIAO Hong, SHI Meiwu. Research progress of two-dimensional carbide in field of flexible electromagnetic absorbing [J]. Journal of Textile Research, 2020, 41(03): 182-187.
[8] LI Yuzhou, ZHANG Yufan, ZHOU Qingqing, CHEN Guoqiang, XING Tieling. Preparation and electrochemical properties of MnO2/graphene/cotton fabric composite electrode [J]. Journal of Textile Research, 2020, 41(01): 96-101.
[9] WANG Xianfeng, GAO Tiancheng, XIAO Jun. Research progress of stitching technology of composite materials [J]. Journal of Textile Research, 2019, 40(12): 169-177.
[10] SONG Xing, ZHU Chengyan, CAI Fengjie, LÜ Zhining, TIAN Wei. Influence of alkali treatment on mechanical properties of polyester/photosensitive resin composites [J]. Journal of Textile Research, 2019, 40(07): 97-102.
[11] WANG Xinhou, ZHANG Linmei, SUN Xiaoxia. Preparation of flexible puncture-proof polyester/SiC and puncture-proof property [J]. Journal of Textile Research, 2019, 40(06): 171-175.
[12] MIAO Runwu, JIN Lihua, WEI Qiyu, HAN Xiao, HONG Jianhan. Preparation and electromagnetic shielding property of conductive poly(p-phenylene terephamide) of reinforced composite materials [J]. Journal of Textile Research, 2019, 40(02): 100-104.
[13] . Research progress on graphene/silk composite materials [J]. Journal of Textile Research, 2018, 39(10): 168-174.
[14] . Preparation and properties of self-weaving composites of bacterial cellulose/polyester [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 126-131.
[15] . Fabrication and sound absorption properties of waste fiber composite materials [J]. Journal of Textile Research, 2016, 37(2): 39-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!