Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (01): 10-15.doi: 10.13475/j.fzxb.20200606006

• Fiber Materials • Previous Articles     Next Articles

Preparation and properties of sol-gel modified flame retardant viscose fiber

MA Junzhi1,2, GE Hong2, WANG Dong1, FU Shaohai1()   

  1. 1. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    2. CHTC Helon (Weifang) New Materials Co., Ltd., Weifang, Shandong 261100, China
  • Received:2020-06-19 Revised:2020-10-18 Online:2021-01-15 Published:2021-01-21
  • Contact: FU Shaohai E-mail:shaohaifu@hotmail.com

Abstract:

In order to improve the flame-retardant properties of viscose/dithiopyrophosphate (VF/DDPS) fibers, the sol-gel technology was used to modify the VF/DDPS fiber surface via the hydrolysis of tetraethyl orthosilicate (TEOS). The structures and properties of the modified flame retardant viscose fibers (VF/DDPS/TEOS) were characterized by means of scanning electron microscope, X-ray photoelectron spectroscopy, thermogravimetric analyzer, cone calorimeter,micro combustion calorimeter, and single fiber strength analyzer. The results show that the flame retardancy of VF/DDPS/TEOS fiber was improved with the increase of char residues from 3.23% to 7.93% at 750 ℃. Moreover, the ignition time of VF/DDPS/TEOS fiber is extended from 4 s to 16 s, peak heat release rate and total heat release are decreased by 19.3% and 16.0% respectively, and limiting oxygen index is increased from 28.2% to 29.3%. The surface of VF/DDPS/TEOS fibers forms a dense silica protective film, and the silica significantly enhances the thermal and mass barrier of the carbon layer on the fiber surface during combustion. However, the breaking strength, elongation at break and hygroscopicity of the modified fiber are decreased.

Key words: viscose fiber, sol-gel method, bisneopentyl glycol dithiopyrophosphate, tetraethyl orthosilicate, flame retardancy

CLC Number: 

  • TS102.6

Fig.1

SEM images of fibers before and after TEOS flame retardant modification"

Fig.2

TG(a)and DTG(b)curves of fibers before and after TEOS flame retardant modification"

Fig.3

Combustion properties of fibers before and after TEOS flame retardant modification. (a)Heat release rate; (b) Total heat release"

Tab.1

Combustion performance data of fibers"

样品名称 锥形量热仪 微型量热仪 极限氧
指数值/%
引燃
时间/s
熄火
时间/s
热释放速率峰值/
(kW·m-2)
总放热量/
(MJ·m-2)
热释放速率峰值/
(W·g-1)
燃烧热量/
(J·g-1)
点燃
温度/℃
VF/DDPS 4 198 128.5 11.9 229.4 7.5 285.9 28.2
VF/DDPS/TEOS 16 112 123.1 10.8 185.1 6.3 287.1 29.3

Fig.4

Heat release rate curves of fibers before and after TEOS flame retardant modification"

Fig.5

SEM images of carbon residues of fibers before and after TEOS flame retardant modification(×6 000)"

Fig.6

XPS pattern of fiber carbon residue before and after TEOS flame retardant modification"

Tab.2

Mechanical and hygroscopic properties of fibers before and after TEOS flame retardant modification"

样品 干断裂强度/
(cN·dtex-1)
湿断裂强度/
(cN·dtex-1)
干断裂
伸长率/%
回潮率/
%
VF/DDPS 2.18 1.20 20.8 11.60
VF/DDPS/TEOS 2.09 1.06 17.1 10.95
[1] 郭雪花.用于纺织品功能整理的溶胶凝胶技术[J].轻工科技, 2011, 27(6): 27, 33.
GUO Xuehua. Sol-gel technology for textile functional finishing [J]. Guangxi Journal of Light Industry, 2011, 27(6): 27, 33.
[2] SAIF M J, ZIA K M, REHMAN F, et al. An eco-friendly, permanent, and non-leaching antimicrobial coating on cotton fabrics[J]. Journal of The Textile Institute, 2014,106(9):907-911.
[3] COLLEONI C, DONELLI I, FREDDI G, et al. A novel sol-gel multi-layer approach for cotton fabric finishing by tetraethoxysilane precursor[J]. Surface & Coatings Technology, 2013,235(22):192-203.
[4] ALONGI J, CIOBANU M, TATA J, et al. Thermal stability and flame retardancy of polyester, cotton, and relative blend textile fabrics subjected to sol-gel treatments[J]. Journal of Applied Polymer Science, 2011,119(4):1961-1969.
[5] HRIBERNIK S, SMOLE M S, KLEINSCHEK K S, et al. Flame retardant activity of SiO2-coated regenerated cellulose fibres[J]. Polymer Degradation and Stability, 2007,11(11):1957-1965.
[6] 赵虎. Sol-Gel法制备硅溶胶及对粘胶纤维的改性研究[D]. 广州:华南理工大学, 2015: 34-35.
ZHAO Hu. Study on the preparation of silica sol by Sol-Gel method and the modification of viscose fiber[D]. Guangzhou:South China University of Technology, 2015: 34-35.
[7] ALTLNTAS Z, CAKMAKCL E, KAHRAMAN M V, et al. Preparation of photocurable silica-titania hybridcoatings by an anhydrous sol-gel process[J]. Journal of Sol-Gel Science and Technology, 2011,58(3):612-618.
[8] 邱春阳, 张克铮. 二氧化硅溶胶稳定性的研究[J]. 辽宁石油化工大学学报, 2005,25(2):1-4.
QIU Chunyang, ZHANG Kezheng. The stability of SiO2 sol[J]. Journal of Liaoning University of Petroleum & Chemical Technology, 2005,25(2):1-4.
[9] 刘元美, 高琴文, 朱泉, 等. 纯棉织物耐久阻燃整理工艺[J].纺织科技进展, 2008(5):4-6.
LIU Yuanmei, GAO Qinwen, ZHU Quan, et al. Study on durable flame-retardant finishing of cotton fabrics[J]. Progress in Textile Science & Technology, 2008(5):4-6.
[10] 程明明, 纪全, 夏延致, 等. 阻燃粘胶纤维的热降解性能研究[J]. 合成纤维工业, 2009,32(2):11-13.
CHENG Mingming, JI Quan, XIA Yanzhi, et al. Study on thermal degradation of flame retardant viscose fiber[J]. China Synthetic Fiber Industry, 2009,32(2):11-13.
[11] DENG Yi, WANG Yuzhong, BAN Danling, et al. Burning behavior and pyrolysis products of flame-retardant PET containing sulfur-containing aryl Polyphosphonate[J]. Journal of Analytical and Applied pyrolysis, 2006,76(6):198-202.
[12] 宋翠翠. 过渡金属氧化物对粘胶纤维热稳定性与燃烧性能的影响[D]. 青岛:青岛大学, 2014: 39-41.
SONG Cuicui. Effect of transition metal oxide on thermal stability and combustion performance of viscidity fiber[D]. Qingdao:Qingdao University, 2014: 39-41.
[13] WANNA J T, POWELL J E. Thermal decomposition of cotton cellulose treated with selected salts[J]. Thermochimica Acta, 1993(226):257-263.
[14] 徐婕, 朱宏, 陈国强, 等. 微型量热仪在纺织品燃烧性能测试中的应用[J]. 印染, 2013,39(18):38-40,56.
XU Jie, ZHU Hong, CHEN Guoqiang, et al. Determination of flammability of textiles by micro combustion calorimeter[J]. China Dyeing & Finishing, 2013,39(18):38-40,56.
[15] 周颖雨, 王文庆, 王锐. 层层自组装法制备阻燃织物的研究进展[J]. 北京服装学院学报(自然科学版), 2019,39(4):87-98.
ZHOU Yingyu, WANG Wenqing, WANG Rui. Research progress on the synjournal of flame retardant textiles using layer-by-layer self-assembly technology[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition), 2019,39(4):87-98.
[16] 刘力锋, 陈诺夫, 张富强, 等. 低能离子束方法制备Fe组分渐变的Fe-Si薄膜[J].稀有金属, 2004(3):558-562.
LIU Lifeng, CHEN Nuofu, ZHANG Fuqiang, et al. Iron conten gradually variational Fe-Si film prepared by low-energy ion beam method[J]. Rare Metals, 2004(3):558-562.
[17] 周丹, 刘博, 陈思远, 等. 磷掺杂碳材料的制备、表征及应用进展[J]. 工业催化, 2020,28(6):7-11.
ZHOU Dan, LIU Bo, CHEN Siyuan, et al. Progress in preparation, characterization and application of phosphorus-doped carbon materials[J]. Industrial Catalysis, 2020,28(6):7-11.
[18] 邱秀丽, 刘正芹, 于丽华, 等. 功能粘胶纤维的耐酸碱性[J]. 山东纺织科技, 2010,51(6):51-53.
QIU Xiuli, LIU Zhengqin, YU Lihua, et al. Resistance to acid and alkal of functional viscose fibers[J]. Shandong Textile Science and Technology, 2010,51(6):51-53.
[1] LIU Xi, WANG Dong, ZHANG Liping, LI Min, FU Shaohai. Effect of low refractive resin on structure and properties of spun-dyed viscose fibers [J]. Journal of Textile Research, 2020, 41(07): 9-14.
[2] MA Junzhi, WANG Dong, FU Shaohai. Preparation and properties of flame-retardant viscose fiber / dithiopyrophosphate incorporated with graphene oxide [J]. Journal of Textile Research, 2020, 41(03): 15-19.
[3] DANG Danyang, CUI Lingyan, WANG Liang, LIU Yong. Preparation and properties of cellulose nanofiber / montmorillonite composite aerogels [J]. Journal of Textile Research, 2020, 41(02): 1-6.
[4] SUN Yufa, ZHOU Xiangdong. Synthesis and characterization of novel phosphorous and nitrogen-containing flame retardant for cotton fabrics [J]. Journal of Textile Research, 2019, 40(12): 79-85.
[5] YIN Sili, YANG Yang, JIANG Wen, SHI Yexin, ZHOU Xiaohua, HUANG Jinhong. Preparation and optimization of carboxyl viscose fiber grafted with silkworm chrysalis peptide [J]. Journal of Textile Research, 2019, 40(08): 14-19.
[6] WU Jiao, YU Husheng, WAN Xingyun, TIAN Ping, LI Huimin, HOU Xiaoxin. Preparation and properties of anti-bacterial, anti-mite and anti-mildew functional modified viscose fibers [J]. Journal of Textile Research, 2019, 40(07): 19-23.
[7] ZHANG Anying, WANG Zhaoying, WANG Rui, DONG Zhenfeng, WEI Lifei, WANG Deyi. Preparation and structural properties of flame retardant poly(L-lactic acid) and fiber thereof [J]. Journal of Textile Research, 2019, 40(04): 7-14.
[8] . Adsorption mechanism between nano-gold and viscose fiber [J]. Journal of Textile Research, 2018, 39(09): 22-28.
[9] . Preparation and performance of pentaerythritol phosphate/zine diethyl phosphate synergistic flame retardant polyamide 6 [J]. Journal of Textile Research, 2018, 39(09): 8-14.
[10] . Moisture absorption and sweat transport finishing o meta-aramid fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 80-86.
[11] . Preparation and antibacterial and dyeing properties of chitosan grafted antibacterial viscose fiber  [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 9-13.
[12] . Flame retardant finishing of polyester fabric with phenyl phosphate ester containing triazine structure [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 98-102.
[13] . Preparation and performance of melamine fiber felt [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 65-68.
[14] . Flame retardant finishing of silk fabrics with boron phosphate doped silica sol [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 96-101.
[15] . Synergistic effect between cyclotriphosphazene and triazinederivatives on flame retardancy of poly(ethylene terethalate) [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 11-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!