Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (07): 175-183.doi: 10.13475/j.fzxb.20200607109

• Comprehensive Review • Previous Articles     Next Articles

Recent progress in preparation of cellulose-based organic-inorganic photocatalysts nanohybrids and it's application in water treatment

ZHANG Tingting1,2,3, XU Kexin1, JIN Mengtian2,3, GE Shijie2,3, GAO Guohong4, CAI Yixiao1,2,3(), WANG Huaping2,3   

  1. 1. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
    2. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    3. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
    4. Jiangsu Guowang High-Tech Fiber Co., Ltd., Suzhou, Jiangsu 215226, China
  • Received:2020-06-30 Revised:2021-01-08 Online:2021-07-15 Published:2021-07-22
  • Contact: CAI Yixiao E-mail:yxcai@dhu.edu.cn

Abstract:

With the aim of solving the agglomeration of traditional nano-sized photocatalysts particles that leads to low catalytic activity and recycling difficulty, it is imperative to promote the scalable application of advanced photocatalytic technology using cellulose based hybrid photocatalysts with high active site exposure, high dispersion and long-term stability. This review summarizes the recent progress in worldwide research on cellulose-based organic-inorganic photocatalysts nanohybrids. In terms of different cellulose forms, the fabrication and preparation principle of nanocellulose, cellulose-based membrane, cellulose-based aerogel and their application in the fields of water treatment are discussed. The prospect of cellulose based photocatalytic materials and the existing scientific questions and limitations are proposed. It is anticipated that this review can be used as a reference for preparation and industrialization of cellulose-based functional materials, especially in areas of environmental remediation.

Key words: cellulose-based functional material, environmental remediation, organic-inorganic nanohybrid, advanced oxidation technology, dyeing and printing wastewater treatment

CLC Number: 

  • TS102.5

Tab.1

Classification of nanocellulose and preparation method"

名称 制备方法 直径/nm 长度/nm 聚合度
CNF 机械法、
TEMPO氧化法
5~60 1 000~10 000 ≥500
CNC 酸水解法 5~70 100~250 500~15 000
BC 细菌合成法 20~100 呈纤维网络结构 4 000~10 000

Tab.2

Semiconductor/cellulose composites for degradation of organic pollutants"

光催化材料 制备形态 污染物 光源(波长) 降解率/% 时间/min 参考文献
TiO2/C/棉纤维素 纳米纤维 X-BR 紫外光 90.0 15 [31]
GO@TiO2/纤维素 纳米纤维 IC
MB
40 W紫外光 (320~400 nm) 99.8
98.3
150
250
[32]
C掺杂 ZnO/纤维素 纳米颗粒 MO 6 W (200~400 nm) 95.4 120 [33]
ZIF-8/CNC 纳米颗粒 MB 太阳光 99.8 300 [34]
ZnO/CuO/CNC 纳米颗粒 RB 20 W 紫外光 99.7 40 [35]
BiOBr/纤维素微晶 纳米颗粒 RhB 300 W氙灯(>420 nm) 90.0 70 [36]
g-C3N4/CA RhB 太阳光 99.0 150 [37]
TiO2-Au/纤维素 RhB 500 W氙灯(>400 nm) 94.99 300 [38]
H4SiW12O40/CA MO 300 W 汞灯 94.6 120 [39]
TiO2/PDA/BC MO
RhB
MB
500 W汞灯(>320 nm) 95.1
100.0
99.5
30
60
20
[40]
g-C3N4/纤维素 气凝胶 MB 350 W氙灯(>400 nm) 99.8 80 [41]
TiO2/ CNF 气凝胶 MB 汞灯(365 nm) 98.1 20 [42]
Cu2O/CBA 气凝胶 MB 350 W氙灯(>400 nm) 95.79 60 [43]
CuS/CBA 气凝胶 MB 500 W氙灯(>400 nm) 94.1 60 [44]
SiO2-WxTiO2/纤维素 气凝胶 RhB 125 W汞灯(>400 nm) 95.0 120 [45]
β-FeOOH/纤维素 水凝胶 MB 300 W氙灯(>420 nm) 99.89 30 [46]

Tab.3

Semiconductor/cellulose composites for removal of heavy metal ions"

光催化材料 制备形态 污染物 光源 去除率/% 时间/min 参考文献
P25/CAM 一体式 Cr6+ 1700 W氙弧灯(280~400 nm) 100 90 [49]
TiO2/CNC 纳米颗粒 Cr6+ 300 W氙弧灯(420 nm) 96 80 [50]
N掺杂C/纤维素 纳米颗粒 Cr6+ 500 W氙灯(>420 nm) 80 300 [51]
ZnIn2S4/CNF 纳米颗粒 Cr6+ 300 W氙灯(>420 nm) 100 90 [12]
BiOBr/CCNF 纳米颗粒 Cr6+ 200 W LED灯 100 60 [52]
SWCNT/Fe3O4/TiO2/壳聚糖/CA 纳米纤维 As5+和Cr6+ 30 W UV灯(365 nm) >95 60 [53]
g-C3N4/CA 薄膜 Cr6+ 300 W氙灯(380~750 nm) 95 100 [37]
[1] CAREY J H, LAWRENCE J, TOSINE H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bulletin of Environmental Contamination and Toxicology, 1976, 16(6):697-701.
doi: 10.1007/BF01685575
[2] JIANG Y F, LAWAN I, ZHOU W M, et al. Synjournal, properties and photocatalytic activity of a semiconductor/cellulose composite for dye degradation: a review[J]. Cellulose, 2019, 27(2):595-609.
doi: 10.1007/s10570-019-02851-w
[3] WANG S, LU A, ZHANG L N. Recent advances in regenerated cellulose materials[J]. Progress in Polymer Science, 2016, 53:169-206.
doi: 10.1016/j.progpolymsci.2015.07.003
[4] MOHAMED M A, MUTALIB M A, HIR Z, et al. An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications[J]. International Journal of Biological Macromolecules, 2017, 103:1232-1256.
doi: 10.1016/j.ijbiomac.2017.05.181
[5] MOHAMED M A, SALLEH W N W, JAAFAR J, et al. Incorporation of N-doped TiO2 nanorods in regenerated cellulose thin films fabricated from recycled newspaper as a green portable photocatalyst[J]. Carbohydrate Polymers, 2015, 133:429-437.
doi: 10.1016/j.carbpol.2015.07.057
[6] TAN K, HEO S, FOO M, et al. An insight into nanocellulose as soft condensed matter: challenge and future prospective toward environmental sustainability[J]. Science of the Total Environment, 2019, 650:1309-1326.
doi: 10.1016/j.scitotenv.2018.08.402
[7] 付时雨. 纤维素的研究进展[J]. 中国造纸, 2019, 38(6):54-64.
FU Shiyu. Progress in cellulose research[J]. China Pulp & Paper, 2019, 38(6):54-64.
[8] MOON R J, MARTINI A, NAIRN J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites[J]. Chemical Society Reviews, 2011, 40(7):3941-94.
doi: 10.1039/c0cs00108b
[9] 张思航, 付润芳, 董立琴, 等. 纳米纤维素的制备及其复合材料的应用研究进展[J]. 中国造纸, 2017, 36(1):67-74.
ZHANG Sihang, FU Runfang, DONG Liqin, et al. Research progress on preparation of nano cellulose and its application in composites[J]. China Pulp & Paper, 2017, 36(1):67-74.
[10] 姚一军, 王鸿儒. 纤维素化学改性的研究进展[J]. 材料导报, 2018, 32(19):3478-3488.
YAO Yijun, WANG Hongru. An overview on chemical modification of cellulose[J]. Materials Reports, 2018, 32(19):3478-3488.
[11] TIAN C H, TAO X, LUO S, et al. Cellulose nanofibrils anchored Ag on graphitic carbon nitride for efficient photocatalysis under visible light[J]. Environmental Science: Nano, 2018, 5(9):2129-2143.
doi: 10.1039/C8EN00570B
[12] QIU J H, LI M, YANG L Y, et al. Facile construction of three-dimensional netted ZnIn2S4 by cellulose nanofibrils for efficiently photocatalytic reduction of Cr(VI)[J]. Chemical Engineering Journal, 2019, 375:121990.
doi: 10.1016/j.cej.2019.121990
[13] 朱亚崇, 吴朝军, 于冬梅, 等. 纳米纤维素制备方法的研究现状[J]. 中国造纸, 2020, 39(9):1-10.
ZHU Yachong, WU Chaojun, YU Dongmei, et al. Research status of nanocellulose preparation methods[J]. China Pulp & Paper, 2020, 39(9):1-10.
[14] XUE J, SONG F, DONG X, et al. Controlling self-assembly of cellulose nanocrystal to synergistically regulate (001) reactive facets and hierarchical pore structure of anatase nano-TiO2 for high photocatalytic activity[J]. ACS Sustainable Chemistry & Engineering, 2018, 7(2):1973-1979.
[15] LIU F, SUN Y B, GU J Y, et al. Highly efficient photodegradation of various organic pollutants in water: rational structural design of photocatalyst via thiol-ene click reaction[J]. Chemical Engineering Journal, 2020, 381:122631.
doi: 10.1016/j.cej.2019.122631
[16] 张金明, 张军. 基于纤维素的先进功能材料[J]. 高分子学报, 2010(12):1376-1398.
ZHNAG Jinming, ZHANG Jun. Advanced functional materials based on cellulose[J]. Acta Polymerica Sinica, 2010(12):1376-1398.
[17] WU Y L, YAN Y S, PAN J M, et al. Fabrication and evaluation of molecularly imprinted regenerated cellulose composite membranes via atom transfer radical polymerization[J]. Chinese Chemical Letters, 2014, 25(2):273-278.
doi: 10.1016/j.cclet.2013.11.019
[18] MOHAMED M A, SALLEH W N W, JAAFAR J, et al. Physicochemical characteristic of regenerated cellulose/N-doped TiO2 nanocomposite membrane fabricated from recycled newspaper with photocatalytic activity under UV and visible light irradiation[J]. Chemical Engineering Journal, 2016, 284:202-215.
doi: 10.1016/j.cej.2015.08.128
[19] 钱怡帆, 周堂, 张礼颖, 等. 聚丙烯腈/醋酸纤维素/TiO2复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020, 41(5):8-14.
QIAN Yifan, ZHOU Tang, ZHANG Liying, et al. Preparation of polyacrylonitrile/cellulose acetate/TiO2 composite nanofiber membrane and its photocatalytic degradation performance [J]. Journal of Textile Research, 2020, 41(5):8-14.
[20] ZHANG C, FU Z H, DAI B H, et al. Biochar sulfonic acid immobilized chlorozincate ionic liquid: an efficiently biomimetic and reusable catalyst for hydrolysis of cellulose and bamboo under microwave irradiation[J]. Cellulose, 2014, 21(3):1227-1237.
doi: 10.1007/s10570-014-0167-9
[21] FU F Y, GU J Y, XU X Y, et al. Interfacial assembly of ZnO-cellulose nanocomposite films via a solution process: a one-step biomimetic approach and excellent photocatalytic properties[J]. Cellulose, 2016, 24(1):147-162.
doi: 10.1007/s10570-016-1087-7
[22] FU F Y, LI L Y, LIU L J, et al. Construction of cellulose based ZnO nanocomposite films with antibacterial properties through one-step coagulation[J]. ACS Applied Materials Interfaces, 2015, 7(4):2597-606.
doi: 10.1021/am507639b
[23] ZHAO H X, CHEN S, QUAN X, et al. Integration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment[J]. Applied Catalysis B: Environmental, 2016, 194:134-140.
doi: 10.1016/j.apcatb.2016.04.042
[24] GAO Z, YANG H P, LI J W, et al. Simultaneous evaporation and decontamination of water on a novel membrane under simulated solar light irradiation[J]. Applied Catalysis B: Environmental, 2020, 267:118695.
doi: 10.1016/j.apcatb.2020.118695
[25] 王世贤, 降帅, 李萌萌, 等. 硅烷偶联剂改性纳米纤维素气凝胶的制备及其表征[J]. 纺织学报, 2020, 41(3):33-38.
WANG Shixian, JIANG Shuai, LI Mengmeng, et al. Preparation and characterization of nanocellulose aerogel modified by silane coupling agent[J]. Journal of Textile Research, 2020, 41(3):33-38.
[26] SHI F, YU T, HU S C, et al. Synjournal of highly porous SiO2-(WO3)x·TiO2 composite aerogels using bacterial cellulose as template with solvothermal assisted crystallization[J]. Chemical Engineering Journal, 2016, 292:105-112.
doi: 10.1016/j.cej.2016.02.022
[27] ZHANG J, CAO Y W, FENG J C, et al. Graphene-oxide-sheet-induced gelation of cellulose and promoted mechanical properties of composite aerogels[J]. The Journal of Physical Chemistry C, 2012, 116(14):8063-8068.
doi: 10.1021/jp2109237
[28] WEI J, JIAO X L, WANG T, et al. Fast, simultaneous metal reduction/deposition on electrospun a-WO3/PAN nanofiber membranes and their potential applications for water purification and noble metal recovery[J]. Journal of Materials Chemistry A, 2018, 6(30):14577-14586.
doi: 10.1039/C8TA03686A
[29] QIU J L, FAN P, YUE C L, et al. Multi-networked nanofibrous aerogel supported by heterojunction photocatalysts with excellent dispersion and stability for photocatalysis[J]. Journal of Materials Chemistry A, 2019, 7(12):7053-7064.
doi: 10.1039/C9TA00388F
[30] RAJAGOPAL S, PARAMASIVAM B, MUNIYASAMY K J S, et al. Photocatalytic removal of cationic and anionic dyes in the textile wastewater by H2O2 assisted TiO2 and micro-cellulose composites[J]. Separation Purification Technology, 2020, 252:117444.
doi: 10.1016/j.seppur.2020.117444
[31] 吉强, 王晓, 戚俊然, 等. 光接枝丙烯酸棉纤维素基 TiO2/C光催化剂的制备与光催化性[J]. 纺织学报, 2017, 38(10):75-80.
JI Qiang, WANG Xiao, QI Junran, et al. Preparation and photocatalysis of acrylic acid grafted cotton cellulose-based TiO2/C photocatalyst [J]. Journal of Textile Research, 2017, 38(10):75-80.
[32] ABOAMERA N M, MOHAMED A, SALAMA A, et al. An effective removal of organic dyes using surface functionalized cellulose acetate/graphene oxide composite nanofibers[J]. Cellulose, 2018, 25(7):4155-4166.
doi: 10.1007/s10570-018-1870-8
[33] XIAO H, SHAN Y W, ZHANG W Y, et al. C-nanocoated ZnO by TEMPO-oxidized cellulose templating for improved photocatalytic performance[J]. Carbohydrate Polymers, 2020, 235:115958.
doi: 10.1016/j.carbpol.2020.115958
[34] MA J, HU J, TANG Y, et al. In-situ preparation of hollow cellulose nanocrystals/zeolitic imidazolate framework hybrid microspheres derived from Pickering emulsion[J]. Journal of Colloid and Interface Science, 2020, 572:160-169.
doi: 10.1016/j.jcis.2020.03.076
[35] ELFEKY A S, SALEM S S, ELZAREF A S, et al. Multifunctional cellulose nanocrystal /metal oxide hybrid, photo-degradation, antibacterial and larvicidal activities[J]. Carbohydrate Polymers, 2020, 230:115711.
doi: 10.1016/j.carbpol.2019.115711
[36] ZHOU W M, SUN S C, JIANG Y F, et al. Template in situ synjournal of flower-like BiOBr/microcrystalline cellulose composites with highly visible-light photocatalytic activity[J]. Cellulose, 2019, 26(18):9529-9541.
doi: 10.1007/s10570-019-02722-4
[37] WANG S Y, LI F, DAI X H, et al. Highly flexible and stable carbon nitride/cellulose acetate porous films with enhanced photocatalytic activity for contaminants removal from wastewater[J]. Journal of Hazardous Materials, 2020, 384:121417.
doi: 10.1016/j.jhazmat.2019.121417
[38] YU Y Q, ZHU X R, WANG L R, et al. A simple strategy to design 3-layered Au-TiO2 dual nanoparticles immobilized cellulose membranes with enhanced photocatalytic activity[J]. Carbohydrate Polymers, 2020, 231:115694.
doi: 10.1016/j.carbpol.2019.115694
[39] LI W, LI T T, LI G T, et al. Electrospun H4SiW12O40/cellulose acetate composite nanofibrous membrane for photocatalytic degradation of tetracycline and methyl orange with different mechanism[J]. Carbohydrate Polymers, 2017, 168:153-162.
doi: 10.1016/j.carbpol.2017.03.079
[40] YANG L Y, CHEN C T, HU Y, et al. Three-dimensional bacterial cellulose/polydopamine/TiO2 nanocomposite membrane with enhanced adsorption and photocatalytic degradation for dyes under ultraviolet-visible irradiation[J]. Journal of Colloid and Interface Science, 2020, 562:21-28.
doi: 10.1016/j.jcis.2019.12.013
[41] BAI W D, YANG X G, DU X L, et al. Robust and recyclable macroscopic g-C3N4/cellulose hybrid photocatalysts with enhanced visible light photocatalytic activity[J]. Applied Surface Science, 2020, 504:144179.
doi: 10.1016/j.apsusc.2019.144179
[42] LI S, HAO X F, DAI X D, et al. Rapid photocatalytic degradation of pollutant from water under UV and sunlight via cellulose nanofiber aerogel wrapped by TiO2[J]. Journal of Nanomaterials, 2018. DOI: 10.1155/2018/8752015.
[43] SU X P, LIAO Q, LIU L, et al. Cu2O nanoparticle-functionalized cellulose-based aerogel as high-performance visible-light photocatalyst[J]. Cellulose, 2016, 24(2):1017-1029.
doi: 10.1007/s10570-016-1154-0
[44] SAEED R M Y, BANO Z, SUN J Z, et al. CuS-functionalized cellulose based aerogel as biocatalyst for removal of organic dye[J]. Journal of Applied Polymer Science, 2019, 136(15):47404.
doi: 10.1002/app.47404
[45] LIU D Y, SHI F, LIU J X, et al. Synjournal of SiO2-WxTiO2 composite aerogels via solvothermal crystallization under the guidance of bacterial cellulose followed by freeze drying method[J]. Journal of Sol-Gel Science and Technology, 2017, 84(1):42-50.
doi: 10.1007/s10971-017-4463-3
[46] WANG J M, LI X X, CHENG Q Y, et al. Construction of beta-FeOOH@tunicate cellulose nanocomposite hydrogels and their highly efficient photocatalytic properties[J]. Carbohydr Polym, 2020, 229:115470.
doi: 10.1016/j.carbpol.2019.115470
[47] 覃发梅, 邱学青, 孙川, 等. 纳米纤维素去除水体系重金属离子的研究进展[J]. 化工进展, 2019, 38(7):3390-3401.
QIN Famei, QIU Xueqing, SUN Chuan, et al. Research progress in nanocellulose for the removal of heavy metal ions in water[J]. Chemical Industry and Engineering Progess, 2019, 38(7):3390-3401.
[48] LU M, GUAN X H, XU X H, et al. Characteristic and mechanism of Cr(VI) adsorption by ammonium sulfamate-bacterial cellulose in aqueous solutions[J]. Chinese Chemical Letters, 2013, 24(3):253-256.
doi: 10.1016/j.cclet.2013.01.034
[49] MARINHO B A, CRISTÓVÃO R O, DJELLABI R, et al. Photocatalytic reduction of Cr(VI) over TiO2-coated cellulose acetate monolithic structures using solar light[J]. Applied Catalysis B: Environmental, 2017, 203:18-30.
doi: 10.1016/j.apcatb.2016.09.061
[50] LI Y X, ZHANG J J, ZHAN C B, et al. Facile synjournal of TiO2/CNC nanocomposites for enhanced Cr(VI) photoreduction:synergistic roles of cellulose nanocrystals[J]. Carbohydrate Polymers, 2020, 233:115853.
doi: 10.1016/j.carbpol.2020.115853
[51] LI R Q, HU D, HU K, et al. Coupling adsorption-photocatalytic reduction of Cr(VI) by metal-free N-doped carbon[J]. Science of the Total Environment, 2020, 704:135284.
doi: 10.1016/j.scitotenv.2019.135284
[52] GAN L, GENG A B, SONG C, et al. Simultaneous removal of rhodamine B and Cr(VI) from water using cellulose carbon nanofiber incorporated with bismuth oxybromide: the effect of cellulose pyrolysis temperature on photocatalytic performance[J]. Environmental Research, 2020, 185:109414.
doi: 10.1016/j.envres.2020.109414
[53] ZABIHISAHEBI A, KOUSHKBAGHI S, PISHNAMAZI M, et al. Synjournal of cellulose acetate/chitosan/SWCNT/Fe3O4/TiO2 composite nanofibers for the removal of Cr(VI), As(V), methylene blue and congo red from aqueous solutions[J]. International Journal of Biological Macromolecules, 2019, 140:1296-1304.
doi: 10.1016/j.ijbiomac.2019.08.214
[54] XUE Z X, CAO Y Z, LIU N, et al. Special wettable materials for oil/water separation[J]. Journal of Materials Chemistry A, 2014, 2(8):2445-2460.
doi: 10.1039/C3TA13397D
[55] NASEEM S, WU C M, XU T Z, et al. Oil-water separation of electrospun cellulose triacetate nanofiber membranes modified by electrophoretically deposited TiO2/graphene oxide[J]. Polymers (Basel), 2018, 10(7):746.
doi: 10.3390/polym10070746
[56] YANG X, MA J J, LING J, et al. Cellulose acetate-based SiO2/TiO2 hybrid microsphere composite aerogel films for water-in-oil emulsion separation[J]. Applied Surface Science, 2018, 435:609-616.
doi: 10.1016/j.apsusc.2017.11.123
[57] ZHAO J, CHEN X Y, ZHOU Y H, et al. Efficient removal of oil pollutant via simultaneous adsorption and photocatalysis using La-N-TiO2-cellulose/SiO2 difunctional aerogel composite[J]. Research on Chemical Intermediates, 2020, 46(3):1805-1822.
doi: 10.1007/s11164-019-04064-z
[1] LIN Shenggen, LIU Xiaohui, SU Xiaowei, HE Ju, REN Yuanlin. Preparation and properties of Lyocell fibers and fabrics modified with new phytic acid based flame retardant [J]. Journal of Textile Research, 2021, 42(07): 25-30.
[2] SU Mengru, ZOU Ting, CHEN Qichao, LI Chaojing, WANG Fujun, WANG Lu. Research progress of medical barbed sutures [J]. Journal of Textile Research, 2021, 42(05): 178-184.
[3] YU Jinchao, JI Hong, CHEN Kang, GAN Yu. Properties of polyether-ester/polybutylene terephthalate composite fibers prepared by side by side bicomponent melt spinning [J]. Journal of Textile Research, 2021, 42(04): 42-47.
[4] ZHANG Chentian, ZHAO Lianying, GU Xuefeng. Wearability of hollow coffee carbon polyester/cotton blended weft plain knitted fabric [J]. Journal of Textile Research, 2021, 42(03): 102-109.
[5] HU Jing, ZHANG Kaiwei, LI Ranran, LIN Jinyou, LIU Yuqing. Preparation of flax layered nano-cellulose and properties of its reinforced thermoelectric composites [J]. Journal of Textile Research, 2021, 42(02): 47-52.
[6] WANG Shudong, MA Qian, WANG Ke, QU Caixin, QI Yu. Structure and biocompatibility of silk fibroin/gelatin blended hydrogels [J]. Journal of Textile Research, 2020, 41(11): 41-47.
[7] PANG Yali, MENG Jiayi, LI Xin, ZHANG Qun, CHEN Yankun. Preparation of graphene fibers by wet spinning and fiber characterization [J]. Journal of Textile Research, 2020, 41(09): 1-7.
[8] DONG Kuiyong, YANG Tingting, WANG Xueli, HE Yong, YU Jianyong. Research and development progress of bio-based polyester and polyamide fibers [J]. Journal of Textile Research, 2020, 41(01): 174-183.
[9] PAN Weinan, XIANG Hengxue, ZHAI Gongxun, NI Mingda, SHEN Jiaguang, ZHU Meifang. Influence of relative molecular weight of copolyamide 6/66 on crystallization and rheological properties thereof [J]. Journal of Textile Research, 2019, 40(09): 8-14.
[10] REN Yuanlin, JIANG Li'na, HUO Tongguo, TIAN Tian. Research progress of halogen-free flame retardancy and smoke suppression of polyacrylonitrile [J]. Journal of Textile Research, 2019, 40(07): 182-188.
[11] WEI Haijiang, JIANG Li, ZHANG Shunhua. Preperation and properties of heat-resistant phase change wax/polypropylene blends [J]. Journal of Textile Research, 2019, 40(06): 8-13.
[12] MO Dajie, LI Xuming, XU Zenghui. Preparation and properties of poly(3-hydroxybutyrate-co-3-hydroxyl valerate)/polylactic acid flame retardant fibersMO [J]. Journal of Textile Research, 2019, 40(05): 12-17.
[13] LI Xiaochuan, QU Qianqian, LI Xuming. Preparation and properties of polylactic acid/polypropylene blend fiber by melt spinning [J]. Journal of Textile Research, 2019, 40(03): 8-12.
[14] ZHANG Qiong, LIU Hanlin, LI Pingping, LI Ni. Preparation and waterproof and moisture-permeable properties of electrospun polyurethane/silica composite superfine fiber membrane [J]. Journal of Textile Research, 2019, 40(02): 1-7.
[15] . Influence of airflow field distribution and polymer solution jet motion on morphology of solution-blown fibers [J]. Journal of Textile Research, 2015, 36(10): 17-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!