Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (07): 175-183.doi: 10.13475/j.fzxb.20200607109
• Comprehensive Review • Previous Articles Next Articles
ZHANG Tingting1,2,3, XU Kexin1, JIN Mengtian2,3, GE Shijie2,3, GAO Guohong4, CAI Yixiao1,2,3(), WANG Huaping2,3
CLC Number:
[1] |
CAREY J H, LAWRENCE J, TOSINE H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bulletin of Environmental Contamination and Toxicology, 1976, 16(6):697-701.
doi: 10.1007/BF01685575 |
[2] |
JIANG Y F, LAWAN I, ZHOU W M, et al. Synjournal, properties and photocatalytic activity of a semiconductor/cellulose composite for dye degradation: a review[J]. Cellulose, 2019, 27(2):595-609.
doi: 10.1007/s10570-019-02851-w |
[3] |
WANG S, LU A, ZHANG L N. Recent advances in regenerated cellulose materials[J]. Progress in Polymer Science, 2016, 53:169-206.
doi: 10.1016/j.progpolymsci.2015.07.003 |
[4] |
MOHAMED M A, MUTALIB M A, HIR Z, et al. An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications[J]. International Journal of Biological Macromolecules, 2017, 103:1232-1256.
doi: 10.1016/j.ijbiomac.2017.05.181 |
[5] |
MOHAMED M A, SALLEH W N W, JAAFAR J, et al. Incorporation of N-doped TiO2 nanorods in regenerated cellulose thin films fabricated from recycled newspaper as a green portable photocatalyst[J]. Carbohydrate Polymers, 2015, 133:429-437.
doi: 10.1016/j.carbpol.2015.07.057 |
[6] |
TAN K, HEO S, FOO M, et al. An insight into nanocellulose as soft condensed matter: challenge and future prospective toward environmental sustainability[J]. Science of the Total Environment, 2019, 650:1309-1326.
doi: 10.1016/j.scitotenv.2018.08.402 |
[7] | 付时雨. 纤维素的研究进展[J]. 中国造纸, 2019, 38(6):54-64. |
FU Shiyu. Progress in cellulose research[J]. China Pulp & Paper, 2019, 38(6):54-64. | |
[8] |
MOON R J, MARTINI A, NAIRN J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites[J]. Chemical Society Reviews, 2011, 40(7):3941-94.
doi: 10.1039/c0cs00108b |
[9] | 张思航, 付润芳, 董立琴, 等. 纳米纤维素的制备及其复合材料的应用研究进展[J]. 中国造纸, 2017, 36(1):67-74. |
ZHANG Sihang, FU Runfang, DONG Liqin, et al. Research progress on preparation of nano cellulose and its application in composites[J]. China Pulp & Paper, 2017, 36(1):67-74. | |
[10] | 姚一军, 王鸿儒. 纤维素化学改性的研究进展[J]. 材料导报, 2018, 32(19):3478-3488. |
YAO Yijun, WANG Hongru. An overview on chemical modification of cellulose[J]. Materials Reports, 2018, 32(19):3478-3488. | |
[11] |
TIAN C H, TAO X, LUO S, et al. Cellulose nanofibrils anchored Ag on graphitic carbon nitride for efficient photocatalysis under visible light[J]. Environmental Science: Nano, 2018, 5(9):2129-2143.
doi: 10.1039/C8EN00570B |
[12] |
QIU J H, LI M, YANG L Y, et al. Facile construction of three-dimensional netted ZnIn2S4 by cellulose nanofibrils for efficiently photocatalytic reduction of Cr(VI)[J]. Chemical Engineering Journal, 2019, 375:121990.
doi: 10.1016/j.cej.2019.121990 |
[13] | 朱亚崇, 吴朝军, 于冬梅, 等. 纳米纤维素制备方法的研究现状[J]. 中国造纸, 2020, 39(9):1-10. |
ZHU Yachong, WU Chaojun, YU Dongmei, et al. Research status of nanocellulose preparation methods[J]. China Pulp & Paper, 2020, 39(9):1-10. | |
[14] | XUE J, SONG F, DONG X, et al. Controlling self-assembly of cellulose nanocrystal to synergistically regulate (001) reactive facets and hierarchical pore structure of anatase nano-TiO2 for high photocatalytic activity[J]. ACS Sustainable Chemistry & Engineering, 2018, 7(2):1973-1979. |
[15] |
LIU F, SUN Y B, GU J Y, et al. Highly efficient photodegradation of various organic pollutants in water: rational structural design of photocatalyst via thiol-ene click reaction[J]. Chemical Engineering Journal, 2020, 381:122631.
doi: 10.1016/j.cej.2019.122631 |
[16] | 张金明, 张军. 基于纤维素的先进功能材料[J]. 高分子学报, 2010(12):1376-1398. |
ZHNAG Jinming, ZHANG Jun. Advanced functional materials based on cellulose[J]. Acta Polymerica Sinica, 2010(12):1376-1398. | |
[17] |
WU Y L, YAN Y S, PAN J M, et al. Fabrication and evaluation of molecularly imprinted regenerated cellulose composite membranes via atom transfer radical polymerization[J]. Chinese Chemical Letters, 2014, 25(2):273-278.
doi: 10.1016/j.cclet.2013.11.019 |
[18] |
MOHAMED M A, SALLEH W N W, JAAFAR J, et al. Physicochemical characteristic of regenerated cellulose/N-doped TiO2 nanocomposite membrane fabricated from recycled newspaper with photocatalytic activity under UV and visible light irradiation[J]. Chemical Engineering Journal, 2016, 284:202-215.
doi: 10.1016/j.cej.2015.08.128 |
[19] | 钱怡帆, 周堂, 张礼颖, 等. 聚丙烯腈/醋酸纤维素/TiO2复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020, 41(5):8-14. |
QIAN Yifan, ZHOU Tang, ZHANG Liying, et al. Preparation of polyacrylonitrile/cellulose acetate/TiO2 composite nanofiber membrane and its photocatalytic degradation performance [J]. Journal of Textile Research, 2020, 41(5):8-14. | |
[20] |
ZHANG C, FU Z H, DAI B H, et al. Biochar sulfonic acid immobilized chlorozincate ionic liquid: an efficiently biomimetic and reusable catalyst for hydrolysis of cellulose and bamboo under microwave irradiation[J]. Cellulose, 2014, 21(3):1227-1237.
doi: 10.1007/s10570-014-0167-9 |
[21] |
FU F Y, GU J Y, XU X Y, et al. Interfacial assembly of ZnO-cellulose nanocomposite films via a solution process: a one-step biomimetic approach and excellent photocatalytic properties[J]. Cellulose, 2016, 24(1):147-162.
doi: 10.1007/s10570-016-1087-7 |
[22] |
FU F Y, LI L Y, LIU L J, et al. Construction of cellulose based ZnO nanocomposite films with antibacterial properties through one-step coagulation[J]. ACS Applied Materials Interfaces, 2015, 7(4):2597-606.
doi: 10.1021/am507639b |
[23] |
ZHAO H X, CHEN S, QUAN X, et al. Integration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment[J]. Applied Catalysis B: Environmental, 2016, 194:134-140.
doi: 10.1016/j.apcatb.2016.04.042 |
[24] |
GAO Z, YANG H P, LI J W, et al. Simultaneous evaporation and decontamination of water on a novel membrane under simulated solar light irradiation[J]. Applied Catalysis B: Environmental, 2020, 267:118695.
doi: 10.1016/j.apcatb.2020.118695 |
[25] | 王世贤, 降帅, 李萌萌, 等. 硅烷偶联剂改性纳米纤维素气凝胶的制备及其表征[J]. 纺织学报, 2020, 41(3):33-38. |
WANG Shixian, JIANG Shuai, LI Mengmeng, et al. Preparation and characterization of nanocellulose aerogel modified by silane coupling agent[J]. Journal of Textile Research, 2020, 41(3):33-38. | |
[26] |
SHI F, YU T, HU S C, et al. Synjournal of highly porous SiO2-(WO3)x·TiO2 composite aerogels using bacterial cellulose as template with solvothermal assisted crystallization[J]. Chemical Engineering Journal, 2016, 292:105-112.
doi: 10.1016/j.cej.2016.02.022 |
[27] |
ZHANG J, CAO Y W, FENG J C, et al. Graphene-oxide-sheet-induced gelation of cellulose and promoted mechanical properties of composite aerogels[J]. The Journal of Physical Chemistry C, 2012, 116(14):8063-8068.
doi: 10.1021/jp2109237 |
[28] |
WEI J, JIAO X L, WANG T, et al. Fast, simultaneous metal reduction/deposition on electrospun a-WO3/PAN nanofiber membranes and their potential applications for water purification and noble metal recovery[J]. Journal of Materials Chemistry A, 2018, 6(30):14577-14586.
doi: 10.1039/C8TA03686A |
[29] |
QIU J L, FAN P, YUE C L, et al. Multi-networked nanofibrous aerogel supported by heterojunction photocatalysts with excellent dispersion and stability for photocatalysis[J]. Journal of Materials Chemistry A, 2019, 7(12):7053-7064.
doi: 10.1039/C9TA00388F |
[30] |
RAJAGOPAL S, PARAMASIVAM B, MUNIYASAMY K J S, et al. Photocatalytic removal of cationic and anionic dyes in the textile wastewater by H2O2 assisted TiO2 and micro-cellulose composites[J]. Separation Purification Technology, 2020, 252:117444.
doi: 10.1016/j.seppur.2020.117444 |
[31] | 吉强, 王晓, 戚俊然, 等. 光接枝丙烯酸棉纤维素基 TiO2/C光催化剂的制备与光催化性[J]. 纺织学报, 2017, 38(10):75-80. |
JI Qiang, WANG Xiao, QI Junran, et al. Preparation and photocatalysis of acrylic acid grafted cotton cellulose-based TiO2/C photocatalyst [J]. Journal of Textile Research, 2017, 38(10):75-80. | |
[32] |
ABOAMERA N M, MOHAMED A, SALAMA A, et al. An effective removal of organic dyes using surface functionalized cellulose acetate/graphene oxide composite nanofibers[J]. Cellulose, 2018, 25(7):4155-4166.
doi: 10.1007/s10570-018-1870-8 |
[33] |
XIAO H, SHAN Y W, ZHANG W Y, et al. C-nanocoated ZnO by TEMPO-oxidized cellulose templating for improved photocatalytic performance[J]. Carbohydrate Polymers, 2020, 235:115958.
doi: 10.1016/j.carbpol.2020.115958 |
[34] |
MA J, HU J, TANG Y, et al. In-situ preparation of hollow cellulose nanocrystals/zeolitic imidazolate framework hybrid microspheres derived from Pickering emulsion[J]. Journal of Colloid and Interface Science, 2020, 572:160-169.
doi: 10.1016/j.jcis.2020.03.076 |
[35] |
ELFEKY A S, SALEM S S, ELZAREF A S, et al. Multifunctional cellulose nanocrystal /metal oxide hybrid, photo-degradation, antibacterial and larvicidal activities[J]. Carbohydrate Polymers, 2020, 230:115711.
doi: 10.1016/j.carbpol.2019.115711 |
[36] |
ZHOU W M, SUN S C, JIANG Y F, et al. Template in situ synjournal of flower-like BiOBr/microcrystalline cellulose composites with highly visible-light photocatalytic activity[J]. Cellulose, 2019, 26(18):9529-9541.
doi: 10.1007/s10570-019-02722-4 |
[37] |
WANG S Y, LI F, DAI X H, et al. Highly flexible and stable carbon nitride/cellulose acetate porous films with enhanced photocatalytic activity for contaminants removal from wastewater[J]. Journal of Hazardous Materials, 2020, 384:121417.
doi: 10.1016/j.jhazmat.2019.121417 |
[38] |
YU Y Q, ZHU X R, WANG L R, et al. A simple strategy to design 3-layered Au-TiO2 dual nanoparticles immobilized cellulose membranes with enhanced photocatalytic activity[J]. Carbohydrate Polymers, 2020, 231:115694.
doi: 10.1016/j.carbpol.2019.115694 |
[39] |
LI W, LI T T, LI G T, et al. Electrospun H4SiW12O40/cellulose acetate composite nanofibrous membrane for photocatalytic degradation of tetracycline and methyl orange with different mechanism[J]. Carbohydrate Polymers, 2017, 168:153-162.
doi: 10.1016/j.carbpol.2017.03.079 |
[40] |
YANG L Y, CHEN C T, HU Y, et al. Three-dimensional bacterial cellulose/polydopamine/TiO2 nanocomposite membrane with enhanced adsorption and photocatalytic degradation for dyes under ultraviolet-visible irradiation[J]. Journal of Colloid and Interface Science, 2020, 562:21-28.
doi: 10.1016/j.jcis.2019.12.013 |
[41] |
BAI W D, YANG X G, DU X L, et al. Robust and recyclable macroscopic g-C3N4/cellulose hybrid photocatalysts with enhanced visible light photocatalytic activity[J]. Applied Surface Science, 2020, 504:144179.
doi: 10.1016/j.apsusc.2019.144179 |
[42] | LI S, HAO X F, DAI X D, et al. Rapid photocatalytic degradation of pollutant from water under UV and sunlight via cellulose nanofiber aerogel wrapped by TiO2[J]. Journal of Nanomaterials, 2018. DOI: 10.1155/2018/8752015. |
[43] |
SU X P, LIAO Q, LIU L, et al. Cu2O nanoparticle-functionalized cellulose-based aerogel as high-performance visible-light photocatalyst[J]. Cellulose, 2016, 24(2):1017-1029.
doi: 10.1007/s10570-016-1154-0 |
[44] |
SAEED R M Y, BANO Z, SUN J Z, et al. CuS-functionalized cellulose based aerogel as biocatalyst for removal of organic dye[J]. Journal of Applied Polymer Science, 2019, 136(15):47404.
doi: 10.1002/app.47404 |
[45] |
LIU D Y, SHI F, LIU J X, et al. Synjournal of SiO2-WxTiO2 composite aerogels via solvothermal crystallization under the guidance of bacterial cellulose followed by freeze drying method[J]. Journal of Sol-Gel Science and Technology, 2017, 84(1):42-50.
doi: 10.1007/s10971-017-4463-3 |
[46] |
WANG J M, LI X X, CHENG Q Y, et al. Construction of beta-FeOOH@tunicate cellulose nanocomposite hydrogels and their highly efficient photocatalytic properties[J]. Carbohydr Polym, 2020, 229:115470.
doi: 10.1016/j.carbpol.2019.115470 |
[47] | 覃发梅, 邱学青, 孙川, 等. 纳米纤维素去除水体系重金属离子的研究进展[J]. 化工进展, 2019, 38(7):3390-3401. |
QIN Famei, QIU Xueqing, SUN Chuan, et al. Research progress in nanocellulose for the removal of heavy metal ions in water[J]. Chemical Industry and Engineering Progess, 2019, 38(7):3390-3401. | |
[48] |
LU M, GUAN X H, XU X H, et al. Characteristic and mechanism of Cr(VI) adsorption by ammonium sulfamate-bacterial cellulose in aqueous solutions[J]. Chinese Chemical Letters, 2013, 24(3):253-256.
doi: 10.1016/j.cclet.2013.01.034 |
[49] |
MARINHO B A, CRISTÓVÃO R O, DJELLABI R, et al. Photocatalytic reduction of Cr(VI) over TiO2-coated cellulose acetate monolithic structures using solar light[J]. Applied Catalysis B: Environmental, 2017, 203:18-30.
doi: 10.1016/j.apcatb.2016.09.061 |
[50] |
LI Y X, ZHANG J J, ZHAN C B, et al. Facile synjournal of TiO2/CNC nanocomposites for enhanced Cr(VI) photoreduction:synergistic roles of cellulose nanocrystals[J]. Carbohydrate Polymers, 2020, 233:115853.
doi: 10.1016/j.carbpol.2020.115853 |
[51] |
LI R Q, HU D, HU K, et al. Coupling adsorption-photocatalytic reduction of Cr(VI) by metal-free N-doped carbon[J]. Science of the Total Environment, 2020, 704:135284.
doi: 10.1016/j.scitotenv.2019.135284 |
[52] |
GAN L, GENG A B, SONG C, et al. Simultaneous removal of rhodamine B and Cr(VI) from water using cellulose carbon nanofiber incorporated with bismuth oxybromide: the effect of cellulose pyrolysis temperature on photocatalytic performance[J]. Environmental Research, 2020, 185:109414.
doi: 10.1016/j.envres.2020.109414 |
[53] |
ZABIHISAHEBI A, KOUSHKBAGHI S, PISHNAMAZI M, et al. Synjournal of cellulose acetate/chitosan/SWCNT/Fe3O4/TiO2 composite nanofibers for the removal of Cr(VI), As(V), methylene blue and congo red from aqueous solutions[J]. International Journal of Biological Macromolecules, 2019, 140:1296-1304.
doi: 10.1016/j.ijbiomac.2019.08.214 |
[54] |
XUE Z X, CAO Y Z, LIU N, et al. Special wettable materials for oil/water separation[J]. Journal of Materials Chemistry A, 2014, 2(8):2445-2460.
doi: 10.1039/C3TA13397D |
[55] |
NASEEM S, WU C M, XU T Z, et al. Oil-water separation of electrospun cellulose triacetate nanofiber membranes modified by electrophoretically deposited TiO2/graphene oxide[J]. Polymers (Basel), 2018, 10(7):746.
doi: 10.3390/polym10070746 |
[56] |
YANG X, MA J J, LING J, et al. Cellulose acetate-based SiO2/TiO2 hybrid microsphere composite aerogel films for water-in-oil emulsion separation[J]. Applied Surface Science, 2018, 435:609-616.
doi: 10.1016/j.apsusc.2017.11.123 |
[57] |
ZHAO J, CHEN X Y, ZHOU Y H, et al. Efficient removal of oil pollutant via simultaneous adsorption and photocatalysis using La-N-TiO2-cellulose/SiO2 difunctional aerogel composite[J]. Research on Chemical Intermediates, 2020, 46(3):1805-1822.
doi: 10.1007/s11164-019-04064-z |
[1] | LIN Shenggen, LIU Xiaohui, SU Xiaowei, HE Ju, REN Yuanlin. Preparation and properties of Lyocell fibers and fabrics modified with new phytic acid based flame retardant [J]. Journal of Textile Research, 2021, 42(07): 25-30. |
[2] | SU Mengru, ZOU Ting, CHEN Qichao, LI Chaojing, WANG Fujun, WANG Lu. Research progress of medical barbed sutures [J]. Journal of Textile Research, 2021, 42(05): 178-184. |
[3] | YU Jinchao, JI Hong, CHEN Kang, GAN Yu. Properties of polyether-ester/polybutylene terephthalate composite fibers prepared by side by side bicomponent melt spinning [J]. Journal of Textile Research, 2021, 42(04): 42-47. |
[4] | ZHANG Chentian, ZHAO Lianying, GU Xuefeng. Wearability of hollow coffee carbon polyester/cotton blended weft plain knitted fabric [J]. Journal of Textile Research, 2021, 42(03): 102-109. |
[5] | HU Jing, ZHANG Kaiwei, LI Ranran, LIN Jinyou, LIU Yuqing. Preparation of flax layered nano-cellulose and properties of its reinforced thermoelectric composites [J]. Journal of Textile Research, 2021, 42(02): 47-52. |
[6] | WANG Shudong, MA Qian, WANG Ke, QU Caixin, QI Yu. Structure and biocompatibility of silk fibroin/gelatin blended hydrogels [J]. Journal of Textile Research, 2020, 41(11): 41-47. |
[7] | PANG Yali, MENG Jiayi, LI Xin, ZHANG Qun, CHEN Yankun. Preparation of graphene fibers by wet spinning and fiber characterization [J]. Journal of Textile Research, 2020, 41(09): 1-7. |
[8] | DONG Kuiyong, YANG Tingting, WANG Xueli, HE Yong, YU Jianyong. Research and development progress of bio-based polyester and polyamide fibers [J]. Journal of Textile Research, 2020, 41(01): 174-183. |
[9] | PAN Weinan, XIANG Hengxue, ZHAI Gongxun, NI Mingda, SHEN Jiaguang, ZHU Meifang. Influence of relative molecular weight of copolyamide 6/66 on crystallization and rheological properties thereof [J]. Journal of Textile Research, 2019, 40(09): 8-14. |
[10] | REN Yuanlin, JIANG Li'na, HUO Tongguo, TIAN Tian. Research progress of halogen-free flame retardancy and smoke suppression of polyacrylonitrile [J]. Journal of Textile Research, 2019, 40(07): 182-188. |
[11] | WEI Haijiang, JIANG Li, ZHANG Shunhua. Preperation and properties of heat-resistant phase change wax/polypropylene blends [J]. Journal of Textile Research, 2019, 40(06): 8-13. |
[12] | MO Dajie, LI Xuming, XU Zenghui. Preparation and properties of poly(3-hydroxybutyrate-co-3-hydroxyl valerate)/polylactic acid flame retardant fibersMO [J]. Journal of Textile Research, 2019, 40(05): 12-17. |
[13] | LI Xiaochuan, QU Qianqian, LI Xuming. Preparation and properties of polylactic acid/polypropylene blend fiber by melt spinning [J]. Journal of Textile Research, 2019, 40(03): 8-12. |
[14] | ZHANG Qiong, LIU Hanlin, LI Pingping, LI Ni. Preparation and waterproof and moisture-permeable properties of electrospun polyurethane/silica composite superfine fiber membrane [J]. Journal of Textile Research, 2019, 40(02): 1-7. |
[15] | . Influence of airflow field distribution and polymer solution jet motion on morphology of solution-blown fibers [J]. Journal of Textile Research, 2015, 36(10): 17-23. |
|