Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (03): 64-70.doi: 10.13475/j.fzxb.20200700907

• Fiber Materials • Previous Articles     Next Articles

Kinetic study on synthesis of bottle polyester using Ti-Mg catalyst

GUAN Zhenyu1,2,3, ZHOU Wenle1, ZHANG Yumei2,3(), WANG Huaping2,3   

  1. 1. Shanghai Research Institute of Petrochemical Technology, China Petroleum & Chemical Corporation, Shanghai 201208, China
    2. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
    3. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
  • Received:2020-07-03 Revised:2020-12-07 Online:2021-03-15 Published:2021-03-17
  • Contact: ZHANG Yumei E-mail:zhangym@dhu.edu.cn

Abstract:

In order to study the effect of activity and hydrolysis resistance of titanium magnesium composite catalyst (TMPC) on the properties of high viscosity polyester for bottle production, the hydrolysis characteristics of the TMPC catalyst, molecular weight of polyester, acetaldehyde (AA) content and color of polyester were investigated, and the kinetics of esterification, melt polycondensation and solid-state polycondensation of different catalytic systems were studied in detail. The results show that TMPC is resistant to hydrolysis and has obvious catalytic effects on esterification and polycondensation. TMPC was found to be 36 times as active as antimony catalyst under the same polymerization conditions. The polycondensation time was proved 60 minutes shorter than that of ethylene glycol antimony (EGA), and the activity energy of esterification is lower than that of EGA and ethylene glycol titanium (EGT). The solid-state polycondensation rate of TMPC is close to that of EGA, and the activation energy is slightly higher than that of EGA. The high viscosity polyester with number-average molecular weight of 25 734 g/mol was obtained by solid-state polycondensation. The color phase of the product is similar to that of EGA catalyzed polyester, and the acetaldehyde content was as low as 0.59 μg/g, which could be used as a green and efficient catalyst for high viscosity bottle grade polyester.

Key words: Ti-Mg catalyst, bottle polyester, high viscosity polyester, polymerization kinetics, acetaldehyde content

CLC Number: 

  • TQ342.2

Tab.1

Performance of PET synthesized by different catalyst systems"

催化剂 缩聚工艺 催化剂用量/
(μg·g-1)
稳定剂 特性黏度
(dL·g-1)
数均分子量/
(g·mol-1)
色相 端羧基含量/
(mol·t-1)
乙醛含量/
(μg·g-1)
L b
EGA 熔融 180 PPA 0.741 14 746 85.9 3.23 29 88.00
固相 0.989 26 154 86.4 6.76 21 0.66
EGT 熔融 6 TEP 0.756 15 387 88.6 6.23 20 95.00
固相 0.966 25 167 87.1 8.48 11 0.87
TMPC 熔融 5 TEP 0.771 16 136 88.3 3.58 18 87.00
固相 0.974 25 734 87.6 7.10 9 0.59

Fig.1

Infrared spectra of PET basic chips synthesized by different catalytic systems. (a) ATR-IR of three kind of PET;(b) Local enlarged view after normalized"

Fig.2

Esterification kinetics of different catalytic systems. (a)Fit curve of relationship between esterification time and esterification rate; (b)Fit curve of relationship between T-1 and ln K"

Tab.2

Esterification activation energies of different catalyst systems"

催化剂 酯化时间/min 反应活化能/(kJ·mol-1)
EGA 105 24.4
EGT 92 20.9
TMPC 90 17.1

Fig.3

Melt polycondensation kinetics of different catalytic systems. (a) Fit curve of relationship between M ˉ n and polycondensation time at 286 ℃; (b)Fit curve of relationship between T-1 and lnK "

Tab.3

Polycondensation activation energies of different catalyst systems"

催化
温度/
K/(g·mol-1·
min-1)
线性回归方程 ΔE/
(kJ·mol-1)
EGA 271 68.87 lnK=-10 209(1/T)+22.98 95.05
276 78.51
281 97.34
286 112.16
EGT 271 72.53 lnK=-9 838(1/T)+22.35 81.76
276 84.31
281 99.98
286 117.47
TMPC 271 102.10 lnK=-7 921(1/T)+23.38 65.82
276 116.87
281 129.58
286 152.27

Fig.4

Relationship between intrinsic viscosity and acetaldehyde content in solid state polymerizationprocess at 220 ℃"

Fig.5

Solid state polymerization kinetics of different catalytic systems. (a)Fit curve of relationship between t1/2 and M ˉ n at 220 ℃; (b)Fit curve of relationship between T-1 and lnK "

Tab.4

Solid state polymerization activation energies of different catalyst systems"

催化
固相缩聚
温度/℃
K/(g·mol-1·
min-1)
线性回归方程 ΔE/
(kJ·mol-1)
EGA 215 288.11 lnK=-2 250(1/T)+10.27 18.70
220 301.66
225 317.20
230 330.56
EGT 215 261.52 lnK=-2 504(1/T)+10.70 20.81
220 276.03
225 290.81
230 304.62
TMPC 215 270.06 lnK=-2 460(1/T)+10.64 20.44
220 285.61
225 299.60
230 314.43
[1] 李顶松, 曹睿, 赵玲. 聚酯反应催化剂的研究[J]. 聚酯工业, 2020,168(2):36-38.
LI Dingsong, CAO Rui, ZHAO Ling. Research of the catalysts of polyester reaction[J]. Polyester Industry, 2020,168(2):36-38.
[2] 赖柏民, 沈东升, 汪美贞. 浙江省纺织染整企业废水中可吸附有机卤化物调查研究[J]. 环境污染与防治, 2016,38(2):66-69.
LAI Baimin, SHEN Dongsheng, WANG Meizhen. Investigation of adsorbable organic halogens in the dyeing and finishing textile industry in Zhejiang Province[J]. Environmental Pollution and Control, 2016,38(2):66-69.
[3] 萧斌, 王丽苹, 杨先贵, 等. 聚酯催化剂的研究进展[J]. 化学试剂, 2010,32(3):223-226.
XIAO Bin, WANG Liping, YANG Xiangui, et al. Development of research on polyester catalyst[J]. Chemical Reagents, 2010,32(3):223-226.
[4] 郑晓明, 宋振宇, 谢文键. 降低瓶级聚酯切片乙醛含量的工艺优化[J]. 聚酯工业, 2003,16(6):54-57.
ZHENG Xiaoming, SONG Zhenyu, XIE Wenjian. Process optimization of decreasing mass fraction of ethanal in bottle grade PET chips[J]. Polyester Industry, 2003,16(6):54-57.
[5] 孙宾, 王鸣义. 钛系催化剂在聚酯合成领域的应用进展及趋势:上[J]. 纺织导报, 2019 (9):38-49.
SUN Bin, WANG Mingyi. Application and prospect of titanium-based catalysts in the polyester synjournal:Ⅰ[J]. China Textile Leader, 2019 (9):38-49.
[6] ISAMU S, KAWAKAMI T, OKUMURA M. A quantum chemical study on polymerization catalysts for polyesters: catalytic performance of chelated complexes of titanium[J]. Polymer, 2013,54:3297-3305.
doi: 10.1016/j.polymer.2013.04.040
[7] 张大省. 钛系催化剂在聚对苯二甲酸乙二醇酯合成中的应用[J]. 纺织导报, 2020 (1):48-52.
ZHANG Dasheng. Titanium catalyst for the synjournal of polyethylene terephthalate[J]. China Textile Leader, 2020 (1):48-52.
[8] FORTUNATO B, MUNARI P, MANARESI P, et al. Inhibiting effect of phosphorus compounds on model ran esterification and direct esterification reactions catalyzed by titanium tetrabutylate[J]. Polymer, 1994,35(18):4006-4010.
[9] SINGH A, MEHROTRA R C. Novel heterometallic alkoxide coordination systems of polyols (glycols, di-and tri-ethanolamines) derived from the corresponding homometallic moieties[J]. Coord Chem Rev, 2004,248(1/2):101-118.
[10] KRASIL'NIKOV V N, SHTIN A P, GYRDASOVA O I, et al. Synjournal and properties of titanium glycolate Ti(OCH2CH2O)2[J]. Russian Journal of Inorganic Chemistry, 2008,53(7):1146-1151.
[11] 朱国强. 聚酯端羧基控制的改进[J]. 聚酯工业, 2008,21(4):38-40.
ZHU Guoqiang. The improvement of the control of PET carboxyl end group value[J]. Polyester Industry, 2008,21(4):38-40.
[12] LI X G, ZHOU Z L, WU X G, et al. Structure and properties of liquid crystalline naphthalenediol copolyesters[J]. Journal of Applied Polymer Science, 1994,51(11):1913-1921.
[13] 江渊, 吴立衡. 红外光谱在聚对苯二甲酸乙二醇酯纤维结构研究中的应用[J]. 高分子通报, 2001(2):62-68.
JIANG Yuan, WU Liheng. Applications of infrared spectroscopy in the structural study of poly(ethylene terephthalate) fibers[J]. Polymer Bulletin, 2001(2):62-68.
[14] 黄关葆. 线型饱和聚酯与共聚酯的合成及性能研究[D]. 成都:四川大学, 2003: 44-46.
HUANG Guanbao. Studies on the synthesis and properties of linear saturated polyesters and copolyesters[D]. Chengdu:Sichuan Universiy, 2003: 44-46.
[15] 窦玉芹, 黄关葆. 新型无锑催化剂在聚酯合成中酯化反应动力学研究[J]. 聚酯工业, 2005,18(2):21-23.
DOU Yuqin, HUANG Guanbao. Study on the kinetics of PTA esterification with non-antimony catalysts[J]. Polyester Industry, 2005,18(2):21-23.
[16] RILER G, FASERFORSCHU U S W. Kinetics of polycondensation of BHET[J]. Text Technol, 1973,24(6):235-239.
[17] 娄佳慧, 王锐, 张文娟, 等. 有机钛-硅催化剂合成聚酯的动力学研究[J]. 纺织学报, 2018,39(7):1-6.
LOU Jiahui, WANG Rui, ZHANG Wenjuan, et al. Synjournal kinetics of polyester by organic titanium-silicon catalysts[J]. Journal of Textile Research, 2018,39(7):1-6.
[18] JABARIN S A, LOFGREN E A. Solid state polymerization of poly(ethylene terephthalate): kinetic and property parameters[J]. Journal of Applied Polymer Science, 1986,32(6):5315-5335.
[19] KIM T Y, LOFGREN E A, JABARIN S A. Solid-state polymerization of poly(ethylene terephthalate): I: experimental study of the reaction kinetics and properties[J]. Journal of Applied Polymer Science, 2003,89(1):197-212.
[1] WANG Jingjing, CHEN Yong, WANG Chaosheng, WANG Huaping, BIAN Shuchang, WU Jing. Extraction of oligomers from bio-based propylene terephthalate polyester and its thermal properties [J]. Journal of Textile Research, 2020, 41(06): 1-7.
[2] LI Mingming, CHEN Ye, LI Xia, WANG Huaping. Influence of spinning process on property of parallel composite polyester fiber [J]. Journal of Textile Research, 2019, 40(12): 16-20.
[3] ZHANG Tengfei, SHI Ludan, HU Hongmei, WANG Yu, WANG Xueli, YU Jianyong. Synthesis and characterization of bio-based polyamide 56 oligomer modified polyester [J]. Journal of Textile Research, 2019, 40(06): 1-7.
[4] . Preparation and properties of new flame retardant hydrophilic polyester [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(2): 18-22.
[5] . Preparation, structure and properties of new antistatic polyester fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(1): 7-11.
[6] . Effects of electrospinning and melt spinning on surface structure of PET fibres [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(9): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!