Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (04): 107-113.doi: 10.13475/j.fzxb.20200701307

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Preparation of Ag6Si2O7/TiO2 photocatalyst and its photocatalytic degradation of methylene blue

JIANG Wenwen1,2, MO Huilin1,2, FAN Tingyue1,2, ZHAO Ziyao1,2, REN Yu1,2(), WANG Chunxia1,3, ZHANG Wei1,2, ZANG Chuanfeng1,2   

  1. 1. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
    2. National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong, Jiangsu 226019, China
    3. College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
  • Received:2020-07-06 Revised:2021-01-07 Online:2021-04-15 Published:2021-04-20
  • Contact: REN Yu E-mail:ren.y@ntu.edu.cn

Abstract:

In order to prepare visible light catalyst with stable performance, a novel highly efficient Ag6Si2O7/TiO2 photocatalyst was prepared by an in-situ deposition method.The surface morphology, crystalline structure, chemical elemental composition and fluorescence spectrum of the photocatalyst were analyzed. The photocatalytic activity of the composite catalyst with different concentration of TiO2 were tested by degrading methylene blue (MB) under simulated visible light at room temperature. The results show that Ag6Si2O7 are coated on TiO2 uniformly, Ag6Si2O7 and TiO2 are tightly bonded in the form of core-shell structure, and Ag+, Si4+and Ti4+ exist in composite catalyst. The results of photocatalytic degradation of MB show that the Ag6Si2O7/TiO2 photocatalyst exhibits higher photocatalytic activity under visible light than Ag6Si2O7 and TiO2 used separately. When the mass fraction of TiO2 is 20%, the photocatalyst possesses the highest photocatalytic activity. The degradation efficiency for MB is up to 98.6% after irradiating in simulated solar for 20 min. The novel high-efficiency Ag6Si2O7/TiO2 photocatalyst has a broad application prospect in treatment of printing and dyeing wastewater.

Key words: TiO2, photocatalyst, dye degradation, methylene blue, printing and dyeing wastewater treatment

CLC Number: 

  • O643.36

Fig.1

Formation of Ag6Si2O7/TiO2"

Fig.2

SEM images of photocatalysts"

Fig.3

XRD patterns of photocatalysts"

Fig.4

XPS spectra of Ag6Si2O7/TiO2. (a)Ag6Si2O7/TiO2 wide spectrum; (b)Ti2p spectrum; (c)Ag3d spectrum; (d)Si2p spectrum"

Fig.5

FT-IR spectra of photocatalysts"

Fig.6

Photoluminescence spectra of photocatalysts"

Fig.7

Photocatalytic activity of samples under simulated visible light irradiation"

Tab.1

Ag6Si2O7/TiO2degradation efficiency of methylene blue under different capture agents"

捕获剂 空白样 EDTA-2Na IPA BQ
降解率/% 98.6 36.8 91.6 76.3

Fig.8

Photocatalytic mechanisms of photo-generated carriers transfer under visible light before (a) and after (b) combination"

[1] 李冰蕊, 潘家豪, 王挺, 等. 用吸附相反应技术制备弱光响应的铈掺杂TiO2复合光催化剂[J]. 纺织学报, 2018,39(5):67-73.
LI Bingrui, PAN Jiahao, WANG Ting, et al. Preparation of weak-light-driven TiO2 composite photocatalyst by adsorption phase synjournal[J]. Journal of Textile Research, 2018,39(5):67-73.
[2] 高大伟, 王春霞, 林洪芹, 等. 二氧化钛纳米管的制备及其光催化性能[J]. 纺织学报, 2017,38(4):23-36.
GAO Dawei, WANG Chunxia, LIN Hongqin, et al. Preparation and photocatalytic property of TiO2 nanotubes[J]. Journal of Textile Research, 2017,38(4):23-36.
[3] MASTEN S J, DAVIES S. The use of ozonation to degrade organic contaminants in wastewaters[J]. Environmental Science & Technology, 1994,28:180-185.
[4] SLOKAR M Y, MARECHAL A M L. Methods of decoloration of textile wastewaters[J]. Dyes & Pigments, 1998,37:335-356.
[5] YANG K, XINGK B. Adsorption of organic compounds by carbon nanomaterials in aqueous phase: polanyi theory and its application[J]. Chemical Reviews, 2010,41:1855-1861.
[6] ZHAO Y X, FENG C P, WANG Q H, et al. Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor[J]. Journal of Hazardous Materials, 2011,192:1033-1039.
pmid: 21724327
[7] MAOX H, YUAN S H, FALLAHPOUR N, et al. Electrochemically induced dual reactive barriers for transformation of TCE and mixture of contaminants in groundwater[J]. Environmental Science & Technology, 2012,46:12003-12011.
doi: 10.1021/es301711a pmid: 23067023
[8] 盛宇, 徐慧丽, 孟云, 等. 用SiO2/TiO2复合气凝胶制备超疏水光催化防紫外织物[J]. 纺织学报, 2019,40(7):90-96.
SHENG Yu, XU Huili, MENG Yun, et al. Preparation of progsuperhydrophobic, photocatalytic and UV-blocking textiles based on SiO2/TiO2 composite aerogels[J]. Journal of Textile Research, 2019,40(7):90-96.
[9] SHAROTRI N, SHARMA D, SUD D. Experimental and theoretical investigations of Mn-N-co-doped TiO2 photocatalyst for visible light induced degradation of organic pollutants[J]. Journal of Materials Research and Technology, 2019,781:1-14.
[10] 蓝舟, 瞿建刚, 王春梅, 等. 纤维基钒酸铋的制备及其光催化性能[J]. 纺织学报, 2018,39(6):89-95.
LAN Zhou, QU Jiangang, WANG Chunmei, et al. Preparation and photocatalytic properties of BiVO4 loaded fiber[J]. Journal of Textile Research, 2018,39(6):89-95.
[11] 周惠敏, 牛潇, 李志勇, 等. 前驱体比例对SnO2/TiO2纳米纤维晶型及光催化性能的影响[J]. 纺织学报, 2016,37(5):6-10.
ZHOU Huimin, NIU Xiao, LI Zhiyong, et al. Influence of precursors ratio on crystalline and photocatalytic performance of SnO2/TiO2 nanofibers[J]. Journal of Textile Research, 2016,37(5):6-10.
[12] 曾杰生, 王瑞彬, 何蕾. TiO2光催化剂改性的研究进程[J]. 化工新型材料, 2018,46(3):27-33.
ZENG Jiesheng, WANG Ruibin, HE Lei. Research progress on modification of TiO2 photocatalyst[J]. New Chemical Materials, 2018,46(3):27-33.
[13] KHAN M A M, RAHUL S, SUSHIL K, et al. Role of Fe doping in tuning photocatalytic and photoelectrochemical properties of TiO2 for photodegradation of methylene blue[J]. Optics & Laser Technology, 2019,118:170-178.
[14] LI W, TIAN Y, LI H, et al. Novel BiOCl/TiO2 hierarchical composites: synjournal, characterization and application on photocatalysis[J]. Applied Catalysis A: General, 2016,516:81-89.
[15] 王永友, 陈前林. 硅酸银@镁铝水滑石复合材料制备及光催化性能研究[J]. 无机盐工业, 2017,49(12):79-82.
WANG Yongyou, CHEN Qianlin. Study on preparation and photocatalytic properties of silicate silver@hydrotalcite composite material[J]. Inorganic Chemicals Industry, 2017,49(12):79-82.
[16] HU Y G, ZHENG H, XU T Z, et al. Highly efficient Ag6Si2O7/WO3 photocatalyst based on heterojunction with enhanced visible light photocatalytic activities[J]. RSC Advances, 2016,6:103289-103295.
[17] LOU Z Z, HUANG B B, WANG Z Y, et al. Ag6Si2O7: a silicate photocatalyst for the visible region[J]. Cheminform, 2015,45:3873-3875.
[18] QIN J B, CHEN N, FENG C P, et al. Fabrication of a narrow-band-gap Ag6Si2O7/BiOBr composite with high stability and enhanced visible-light photocatalytic activity[J]. Catalysis Letters, 2018,148:2777-2788.
[19] QIN J B, CHEN N, FENG C P, et al. Fabrication of a novel p-n heterojunction BiOCl/Ag6Si2O7 nanocomposite as a highly efficient and stable visible light driven photocatalyst[J]. Catalysis Letters, 2018,149:891-903.
[20] 田圣男, 赵健, 陈玲玲, 等. 银/二氧化钛可见光自清洁织物的制备及其性能[J]. 纺织学报, 2018,39(12):89-94.
TIAN Shengnan, ZHAO Jian, CHEN Lingling, et al. Preparation and properties of self-cleaning fabrics based on Ag/TiO2 photocatalysis[J]. Journal of Textile Research, 2018,39(12):89-94.
[21] LIU Zhaowei, TANG Yufei, ZHAO Kang, et al. Self-assembly of positively charged SiO2/Y2O3 composite nanofiber membranes with plum-flower-like structures for the removal of water contaminants[J]. Applied Surface Science, 2019,489:717-724.
[22] 曹俊, 申兴丛, 裘鹏飞, 等. 溶胶-凝胶法制备的钛溶胶形态及其光催化性能[J]. 纺织学报, 2014,35(5):7-12.
CAO Jun, SHEN Xingcong, QIU Pengfei, et al. Morphology and photocatalytic performance of titanium sol prepared by sol-gel method[J]. Journal of Textile Research, 2014,35(5):7-12.
[23] 郭金菊. Ag6Si2O7/蒙脱石复合光催化剂的制备及其光催化降解有机污染物的研究[D]. 武汉:武汉理工大学, 2015: 1-22.
GUO Jinju. Synthesis of Ag6Si2O7/MMT photocatalysts and their performance in photocatalytic degradation of organic pollutants[D]. Wuhan: Wuhan University of Technology, 2015: 1-22.
[24] XIAO G C, WANG X C, LI D Z, et al. In VO4-sensitized TiO2 photocatalysts for efficient air purification with visible light[J]. Journal of Photochemistry & Photobiology A Chemistry, 2018,193:213-221.
[25] CAO J, LUO B D, LIN H L, et al. Visible light photocatalytic activity enhancement and mechanism of AgBr/Ag3PO4 hybrids for degradation of methyl orange[J]. Journal of Hazardous Materials, 2012,217:107-115.
doi: 10.1016/j.jhazmat.2012.03.002 pmid: 22464754
[26] GAO P, SUN D D, NG W G. Multifunctional nanostructured membrane for clean water reclamation from wastewater with various pH conditions[J]. RSC Advances, 2013,3:15202.
[27] 张义安, 狄剑锋. 光催化剂负载酰肼基活性炭除甲醛材料的制备[J]. 纺织学报, 2019,40(3):109-124.
ZHANG Yian, DI Jianfeng. Preparation of photocatalyst loaded activated carbon grafted with polyhydrazide for removing formaldehyde[J]. Journal of Textile Research, 2019,40(3):109-124.
[28] GE M Z, LI S H, HUANG J Y, et al. TiO2 nanotube arrays loaded with reduced graphene oxide films: facile hybridization and promising photo-catalytic applica-tion[J]. Journal of Materials Chemistry A, 2015,3:3491-3499.
[29] 周兴华, 段萍, 罗玉萍, 等. 镧掺杂纳米二氧化钛光催化剂的制备及性能研究[J]. 材料导报, 2015,29(25):1-7.
ZHOU Xinghua, DUAN Ping, LUO Yuping, et al. Study on preparation and properties of La-TiO2 photocatalyst[J]. Materials Review, 2015,29(25):1-7.
[30] LIU J, WU W, TIAN Q Y, et al. Anchoring of Ag6Si2O7 nanoparticles on α-Fe2O3 short nanotubes as a Z-scheme photocatalyst for improving their photocatalytic performances[J]. Dalton Transactions, 2016,45:12745.
doi: 10.1039/c6dt02499h pmid: 27461821
[31] MA G, HISATOMI T, DOMEN K. Semiconductors for photocatalytic and photoelectrochemical solar water splitting[J]. Cheminform, 2014,43:7520-7535.
[32] ZHOU P, YU J, JARONIEC M. All-solid-state Z-scheme photocatalytic systems[J]. Advanced Materials, 2014,26:4920-4935.
doi: 10.1002/adma.201400288 pmid: 24888530
[1] CHENG Lüzhu, WANG Zongqian, WANG Dengfeng, SHEN Jiakun, LI Changlong. Preparation of highly hollow biomass-based activated carbon fiber and its adsorption property to methylene blue [J]. Journal of Textile Research, 2021, 42(02): 129-134.
[2] ZHAO Zhiqi, LI Qiujin, SUN Yuejing, GONG Jixian, LI Zheng, ZHANG Jianfei. Application of magnetic-graphene oxide/poly(allylamine hydrochloride) microcapsules for adsorption of dyes [J]. Journal of Textile Research, 2020, 41(07): 109-116.
[3] JIA Lin, WANG Xixian, TAO Wenjuan, ZHANG Haixia, QIN Xiaohong. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes [J]. Journal of Textile Research, 2020, 41(06): 14-20.
[4] WANG Sen, CHEN Ying. Preparation of nano-TiO2 stabilized emulsion and its application in microencapsulation [J]. Journal of Textile Research, 2020, 41(05): 105-111.
[5] LI Zhenqun, XU Duo, WEI Chunyan, QIAN Yongfang, LÜ Lihua. Preparation of cotton stalk bast cellulose/graphene oxide fiber and its mechanical properties and adsorption capacity [J]. Journal of Textile Research, 2020, 41(01): 15-20.
[6] XU Lin, REN Yu, ZHANG Hongyang, WU Shuangquan, LI Ya, DING Zhirong, JIANG Wenwen, XU Sijun, ZANG Chuanfeng. Construction and properties of superhydrophobic layer of titania/fluorosilane on polyester fabric surface [J]. Journal of Textile Research, 2019, 40(12): 86-92.
[7] CUI Guixin, DONG Yongchun, WANG Peng. Preparation and application properties of wool-Fe complex-based heterogeneous Fenton photocatalysts [J]. Journal of Textile Research, 2019, 40(12): 68-73.
[8] XU Chunxia, JIANG Shuai, HAN Fuyi, XU Fang, LIU Lifang. Preparation of cellulose nanofibrils aerogel and its adsorption of methylene blue [J]. Journal of Textile Research, 2019, 40(10): 20-25.
[9] HAN Ye, ZHANG Hui, ZHU Guoqing, WU Hailiang. Effect of polyethylene glycol on photocatalytic properties of polyethylene terephthalate fibers treated with titanium sulfate under hydrothermal conditions [J]. Journal of Textile Research, 2019, 40(10): 33-41.
[10] GUO Dongyan, XU Naiku, XIAO Changfa. Preparation of poly(meth)acrylate hollow fiber with internal coating of manganese oxide and its capability to decolorize dyes of methylene blue [J]. Journal of Textile Research, 2019, 40(10): 26-32.
[11] SHI Xiaoping, LI Yao, PAN Jiahao, WANG Ting, WU Liguang. Preparation of visible-light-response TiO2 photocatalyst by hydrothermal reduction [J]. Journal of Textile Research, 2019, 40(10): 105-112.
[12] GAO Jing, ZHANG Jun, ZHAO Zeyang, LI Wandi, WANG Jiajun, WANG Lu. Antibacterial durability and wearability of polyester/cotton fabric modified collaboratively by graphene oxide and TiO2/SiO2 [J]. Journal of Textile Research, 2019, 40(10): 120-126.
[13] SHENG Yu, XU Lihui, MENG Yun, SHEN Yong, WANG Liming, PAN Hong. Preparation of superhydrophobic, photocatalytic and UV-blocking textiles based on SiO2/TiO2 composite aerogels [J]. Journal of Textile Research, 2019, 40(07): 90-96.
[14] SUN Hui, ZHANG Hengyuan, XIAN Yulong, ZHOU Chuankai, YU Bin. Preparation and antibacterial properties of TiO2-Ag/poly(lactic acid) nano-composite fibers [J]. Journal of Textile Research, 2019, 40(04): 1-6.
[15] . Preparation and photocatalytic degradation decoloring of TiO2 / reduced graphene oxide composites [J]. Journal of Textile Research, 2018, 39(12): 78-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!