Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (06): 189-197.doi: 10.13475/j.fzxb.20200701809
• Comprehensive Review • Previous Articles Next Articles
WANG Hang1,2,3, WANG Bingxin4, NING Xin1,2,3, QU Lijun1,5, TIAN Mingwei1,5()
CLC Number:
[1] |
WU T, GRAY E, CHEN B. A self-healing, adaptive and conductive polymer composite ink for 3D printing of gas sensors[J]. Journal of Materials Chemistry C, 2018, 6(23):6200-6207.
doi: 10.1039/C8TC01092G |
[2] |
WEI T, AHN B Y, GROTTO J, et al. 3D printing of customized Li-ion batteries with thick electrodes[J]. Advanced Materials, 2018, 30(16):1703027.
doi: 10.1002/adma.v30.16 |
[3] |
CANO-RAYA C, DENCHEV Z Z, CRUZ S F, et al. Chemistry of solid metal-based inks and pastes for printed electronics: a review[J]. Applied Materials Today, 2019, 15:416-430.
doi: 10.1016/j.apmt.2019.02.012 |
[4] | 张楷力, 堵永国. 喷墨打印中的银导电墨水综述[J]. 贵金属, 2014, 35(4):80-87. |
ZHANG Kaili, DU Yongguo. Review of conductive silverinks for inkjet printing[J]. Precious Metals, 2014, 35(4):80-87. | |
[5] |
TORTORICH R, CHOI J. Inkjet Printing of Carbon Nanotubes[J]. Nanomaterials, 2013, 3(3):453-468.
doi: 10.3390/nano3030453 |
[6] | ATREYA M, DIKSHIT K, MARINICK G, et al. Poly(lactic acid)-based ink for biodegradable printed electronics with conductivity enhanced through solvent aging[J]. ACS Applied Materials & Interfaces, 2020, 12(20):23494-23501. |
[7] | 孙悦, 范杰, 王亮, 等. 可穿戴技术在纺织服装中的应用研究进展[J]. 纺织学报, 2018, 39(12):131-138. |
SUN Yue, FAN Jie, WANG Liang, et al. Research progress of wearable technology in textiles and appa-rels[J]. Journal of Textile Research, 2018, 39(12):131-138. | |
[8] |
SINGH T B, SARICIFTCI N S. Progress in plastic electronics devices[J]. Annual Review of Materials Research, 2006, 36(1):199-230.
doi: 10.1146/annurev.matsci.36.022805.094757 |
[9] | 徐海生, 浦甜松. 高精度数码喷墨打印技术及在印刷电子上的应用[J]. 印制电路信息, 2013(12):8-10. |
XU Haisheng, PU Tiansong. High-resolution digital inkjet printing and its applications on printed electro-nics[J]. Printed Electronics, 2013(12):8-10. | |
[10] | 董越, 李晓东, 张牧, 等. 无颗粒型银基导电墨水的制备、性能及其应用研究[J]. 贵金属, 2016, 37(S1):69-74. |
DONG Yue, LI Xiaodong, ZHANG Mu, et al. Preparation Preparation, properties and application on particle free silver conductive ink[J]. Precious Metals, 2016, 37(S1):69-74. | |
[11] |
NAGHDI S, RHEE K, HUI D, et al. A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: different deposition methods and applications[J]. Coatings, 2018, 8(8):278.
doi: 10.3390/coatings8080278 |
[12] | STEWART I E, KIM M J, WILEY B J. Effect of morphology on the electrical resistivity of silver nanostructure films[J]. ACS Applied Materials & Interfaces, 2017, 9(2):1870-1876. |
[13] |
FU Q, STEIN M, LI W, et al. Conductive films prepared from inks based on copper nanoparticles synthesized by transferred arc discharge[J]. Nanotechnology, 2020, 31(2):25302.
doi: 10.1088/1361-6528/ab4524 |
[14] |
HARRA J, MÄKITALO J, SIIKANEN R, et al. Size-controlled aerosol synthesis of silver nanoparticles for plasmonic materials[J]. Journal of Nanoparticle Research, 2012, 14(6):870.
doi: 10.1007/s11051-012-0870-0 |
[15] |
CHEN L, ZHANG D, CHEN J, et al. The use of CTAB to control the size of copper nanoparticles and the concentration of alkylthiols on their surfaces[J]. Materials Science and Engineering: A, 2006, 415(1-2):156-161.
doi: 10.1016/j.msea.2005.08.226 |
[16] |
GRAVES J E, BOWKER M E A, SUMMER A, et al. A new procedure for the template synthesis of metal nanowires[J]. Electrochemistry Communications, 2018, 87:58-62.
doi: 10.1016/j.elecom.2017.11.022 |
[17] |
JIBRIL L, RAMÍREZ J, ZARETSKI A V, et al. Single-Nanowire strain sensors fabricated by nanoskiving[J]. Sensors and Actuators A: Physical, 2017, 263:702-706.
doi: 10.1016/j.sna.2017.07.046 |
[18] |
HOU H, HORN M W, HAMILTON R F. Biased target ion beam deposition and nanoskiving for fabricating NiTi alloy nanowires[J]. Shape Memory and Superelasticity, 2016, 2(4):330-336.
doi: 10.1007/s40830-016-0093-9 |
[19] |
MCCARTHY S A, RATKIC R, PURCELL-MILTON F, et al. Adaptable surfactant-mediated method for the preparation of anisotropic metal chalcogenide nanomaterials[J]. Scientific Reports, 2018, 8(1):2860.
doi: 10.1038/s41598-018-21328-7 |
[20] |
PARVEEN F, SANNAKKI B, MANDKE M V, et al. Copper nanoparticles: synthesis methods and its light harvesting performance[J]. Solar Energy Materials and Solar Cells, 2016, 144:371-382.
doi: 10.1016/j.solmat.2015.08.033 |
[21] | 郑泽军. 纳米金属颗粒的制备及其喷墨打印研究[D]. 南京: 南京邮电大学, 2019:5-10. |
ZHENG Zejun. Preparation of metal nanoparticles and its inkjet printing research[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019:5-10. | |
[22] | 陈浩禹, 张亦文, 吴忠, 等. 金属含量对Co-TiO 2纳米颗粒复合薄膜微观结构及其性能的影响 [J]. 表面技术, 2019, 48(12):54-58. |
CHEN Haoyu, ZHANG Yiwen, WU Zhong, et al. Effects of metal content on the microstructure and properties of Co-TiO 2 nanoparticles composite films [J]. Surface Technology, 2019, 48(12):54-58. | |
[23] | 刘文平, 秦海青, 雷晓旭, 等. 纳米铜导电墨水涂覆后的烧结工艺研究[J]. 粉末冶金技术, 2016, 34(4):295-299. |
LIU Wenping, QIN Haiqing, LEI Xiaoxu, et al. Investigation of sintering process of nano-copper conductive ink[J]. Powder Metallurgy Technology, 2016, 34(4):295-299. | |
[24] |
MAGDASSI S, GROUCHKO M, KAMYSHNY A. Copper nanoparticles for printed electronics: routes towards achieving oxidation stability[J]. Materials, 2010, 3(9):4626-4638.
doi: 10.3390/ma3094626 |
[25] |
CUI W, LU W, ZHANG Y, et al. Gold nanoparticle ink suitable for electric-conductive pattern fabrication using in ink-jet printing technology[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 358(1-3):35-41.
doi: 10.1016/j.colsurfa.2009.12.020 |
[26] |
GUPTA A, MANDAL S, KATIYAR M, et al. Film processing characteristics of nano gold suitable for conductive application on flexible substrates[J]. Thin Solid Films, 2012, 520(17):5664-5670.
doi: 10.1016/j.tsf.2012.04.017 |
[27] |
CHENG C, LI J, SHI T, et al. A novel method of synthesizing antioxidative copper nanoparticles for high performance conductive ink[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(18):13556-13564.
doi: 10.1007/s10854-017-7195-9 |
[28] |
XIA X, XIE C, CAI S, et al. Corrosion characteristics of copper microparticles and copper nanoparticles in distilled water[J]. Corrosion Science, 2006, 48(12):3924-3932.
doi: 10.1016/j.corsci.2006.04.007 |
[29] | 刘进丰, 王晓红, 龚秀清. 铜纳米材料在导电墨水中的应用[J]. 自然杂志, 2018, 40(2):123-130. |
LIU Jinfeng, WANG Xiaohong, GONG Xiuqing. The application of conductive ink based copper nanomate-rials[J]. Chinese Journal of Nature, 2018, 40(2):123-130. | |
[30] |
KIM C K, LEE G, LEE M K, et al. A novel method to prepare Cu@Ag core-shell nanoparticles for printed flexible electronics[J]. Powder Technology, 2014, 263:1-6.
doi: 10.1016/j.powtec.2014.04.064 |
[31] |
HE H, CHEN R, ZHANG L, et al. Fabrication of single-crystalline gold nanowires on cellulose nano-fibers[J]. Journal of Colloid and Interface Science, 2020, 562:333-341.
doi: 10.1016/j.jcis.2019.11.093 |
[32] | 张煜霖, 彭博, 袁妍, 等. PEDOT:PSVMA/AuNPs导电墨水的合成及应用[J]. 影像科学与光化学, 2016, 34(5):452-464. |
ZHANG Yulin, PENG Bo, YUAN Yan, et al. Synthesis and application of PEDOT: PSVMA/AUNPS conductive inks[J]. Imaging Science and Photochemistry, 2016, 34(5):452-464. | |
[33] |
ZHAO D, LIU T, PARK J G, et al. Conductivity enhancement of aerosol-jet printed electronics by using silver nanoparticles ink with carbon nanotubes[J]. Microelectronic Engineering, 2012, 96:71-75.
doi: 10.1016/j.mee.2012.03.004 |
[34] |
CHENG C, ZHANG J, LI S, et al. A water-processable and bioactive multivalent graphene nanoink for highly flexible bioelectronic films and nanofibers[J]. Advanced Materials, 2018, 30(5):1705452.
doi: 10.1002/adma.201705452 |
[35] |
LIU F, QIU X, XU J, et al. High conductivity and transparency of graphene-based conductive ink: Prepared from a multi-component synergistic stabilization method[J]. Progress in Organic Coatings, 2019, 133:125-130.
doi: 10.1016/j.porgcoat.2019.04.043 |
[36] |
LIU P, HE W, LU A. Preparation of low-temperature sintered high conductivity inks based on nanosilver self-assembled on surface of graphene[J]. Journal of Central South University, 2019, 26(11):2953-2960.
doi: 10.1007/s11771-019-4227-z |
[37] |
IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348):56-58.
doi: 10.1038/354056a0 |
[38] | 喻王李, 徐景浩, 徐玉珊, 等. 喷墨打印电路用导电纳米材料的研究进展[J]. 印制电路信息. 2018, 26(10):53-61. |
YU Wangli, XU Jinghao, XU Yushan, et al. Research progress of conductive nanomaterials in inkjet printed circuit[J]. Printed Electronics, 2018, 26(10):53-61. | |
[39] |
LU K L, LAGO R M, CHEN Y K, et al. Mechanical damage of carbon nanotubes by ultrasound[J]. Carbon, 1996, 34(6):814-816.
doi: 10.1016/0008-6223(96)89470-X |
[40] |
HECHT D S, HU L, IRVIN G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures[J]. Advanced Materials, 2011, 23(13):1482-1513.
doi: 10.1002/adma.201003188 |
[41] |
SIMMONS T J, HASHIM D, VAJTAI R, et al. Large area-aligned arrays from direct deposition of single-wall carbon nanotube inks[J]. Journal of the American Chemical Society. 2007, 129(33):10088-10089.
doi: 10.1021/ja073745e |
[42] | 王可, 徐梦雪, 王悦辉. 一种水性导电油墨及其制作方法: 20191031939.1[P].2019-07-23. |
WANG Ke, XU Mengxue, WANG Yuehui. One kind of water-based conductive ink and its preparation method: 20191031939.1[P].2019-07-23. | |
[43] | 宁廷州, 张敬芝, 付玲. 导电高分子材料在电子器件中的研究进展[J]. 工程塑料应用, 2019, 47(11):162-167. |
NING Yanzhou, ZHANG Jingzhi, FU Ling. Research progress of conductive polymer materials in electronic devices[J]. Engineering Plastics Application, 2019, 47(11):162-167. | |
[44] |
HUANG L, EEDUGURALA N, BENASCO A, et al. Open-shell donor-acceptor conjugated polymers with high electrical conductivity[J]. Advanced Functional Materials, 2020, 30(24):1909805.
doi: 10.1002/adfm.v30.24 |
[45] | 葛美珍. 有机导电高分子材料的导电机制分析[J]. 现代盐化工, 2020, 47(1):18-19. |
GE Meizhen. Analysis of conductive mechanism of organic conductive polymer materials[J]. Modern Salt and Chemical Industry, 2020, 47(1):18-19. | |
[46] |
ZHANG R, PENG B, YUAN Y. Flexible printed humidity sensor based on poly(3,4-ethylenedioxythiophene)/reduced graphene oxide/Au nanoparticles with high performance[J]. Composites Science and Technology. 2018, 168:118-125.
doi: 10.1016/j.compscitech.2018.09.013 |
[47] | 郑玉婴, 王攀, 张通, 等. 聚3-戊酰基吡咯/多壁碳纳米管复合材料的制备与电导率研究[J]. 材料科学与工艺, 2012, 20(5):111-115. |
ZHENG Yuying, WANG Pan, ZHANG Tong, et al. Preparation and study on conductivity of PVPy/MWNTs composites[J]. Materials Science&Technology, 2012, 20(5):111-115. | |
[48] | 姜欣, 赵轩亮, 李晶, 等. 石墨烯导电墨水研究进展:制备方法、印刷技术及应用[J]. 科学通报. 2017, 62(27):3217-3235. |
JIANG Xin, ZHAO Xuanliang, LI Jing, et al. Recent developments in graphene conductive ink: Preparation, printing technology and application[J]. Chinese Science Bulletin, 2017, 62(27):3217-3235. | |
[49] | 杨晨啸, 李鹂. 柔性智能纺织品与功能纤维的融合[J]. 纺织学报, 2018, 39(5):160-169. |
YANG Chenxiao, LI Li. Integration of soft intelligent textile and functional fiber[J]. Journal of Textile Research, 2018, 39(5):160-169. | |
[50] |
CAREY T, CACOVICH S, DIVITINI G, et al. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics[J]. Nature Communications, 2017, 8(1):1202.
doi: 10.1038/s41467-017-01210-2 |
[51] |
ROJAS J P, TORRES SEVILLA G A, ALFARAJ N, et al. Nonplanar nanoscale fin field effect transistors on textile, paper, wood, stone, and vinylvia soft material-enabled double-transfer printing[J]. ACS Nano, 2015, 9(5):5255-5263.
doi: 10.1021/acsnano.5b00686 |
[52] | 李克伟, 谢森培, 李康, 等. 织物/纸基柔性印刷电子薄膜导电性能研究[J]. 哈尔滨工业大学学报, 2020:1-9. |
LI Kewei, XIE Senpei, LI Kang, et al. Study on conductivity of fabric/paper-based flexible printedelectronic films[J]. Journal of Harbin Institute of Technology, 2020:1-9. | |
[53] |
ZHU M, LOU M, ABDALLA I, et al. Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing[J]. Nano Energy, 2020, 69:104429.
doi: 10.1016/j.nanoen.2019.104429 |
[54] |
RAUT N C, AL-SHAMERY K. Inkjet printing metals on flexible materials for plastic and paper electronics[J]. Journal of Materials Chemistry C, 2018, 6(7):1618-1641.
doi: 10.1039/C7TC04804A |
[55] | 彭军, 李津, 李伟, 等. 银纳米线研究进展与应用[J]. 现代化工, 2019, 39(4):31-35. |
PENG Jun, LI Jin, LI Wei, et al. Research progress and application of silver nanowires[J]. Modern Chemical Industry, 2019, 39(4):31-35. | |
[56] | 林佳濛, 万爱兰, 缪旭红. 聚吡咯/银导电涤纶织物的制备及其性能[J]. 纺织学报, 2020, 41(3):113-117. |
LIN Jiameng, WAN Ailan, MIAO Xuhong. Preparation and properties of polypyrrole/silver conductivepolyester fabrics[J]. Journal of Textile Research, 2020, 41(3):113-117.
doi: 10.1177/004051757104100205 |
|
[57] |
KARIM N, AFROJ S, TAN S, et al. All inkjet-printed graphene-silver composite ink on textiles for highly conductive wearable electronics applications[J]. Scientific Reports, 2019, 9(1):8035.
doi: 10.1038/s41598-019-44420-y |
[58] | SHAHARIAR H, KIM I, SOEWARDIMAN H, et al. Inkjetprinting of reactive silver ink on textiles[J]. ACS Applied Materials & Interfaces, 2019, 11(6):6208-6216. |
[59] | NECHYPORCHUK O, YU J, NIERSTRASZ V, et al. Cellulose nanofibril-based coatings of woven cotton fabrics for improved inkjet printing with a potential in e-textile manufacturing[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6):4793-4801. |
[60] |
KAO H, CHUANG C, CHANG L, et al. Inkjet-printed silver films on textiles for wearable electronics applications[J]. Surface and Coatings Technology, 2019, 362:328-332.
doi: 10.1016/j.surfcoat.2019.01.076 |
[61] |
HATTORI Y, FALGOUT L, LEE W, et al. Multifunctional skin-like electronics for quantitative, clinical monitoring of cutaneous wound healing[J]. Advanced Healthcare Materials, 2014, 3(10):1597-1607.
doi: 10.1002/adhm.v3.10 |
[62] | 王威, 郭馨, 刘皓. 智能服装用银纳米线柔性传感器的研究进展[J]. 针织工业, 2020(6):68-71. |
WANG Wei, GUO Xin, LIU Hao. Research progress of the flexible silver nanowire sensors for intelligent clothing[J]. Knitting Industries, 2020(6):68-71. | |
[63] | 田明伟, 李增庆, 卢韵静, 等. 纺织基柔性力学传感器研究进展[J]. 纺织学报, 2018, 39(5):170-176. |
TIAN Mingwei, LI Zengqing, LU Yunjing, et al. Recent progress of textile-based flexible mechanical sensors[J]. Journal of Textile Research, 2018, 39(5):170-176. | |
[64] |
HONG S Y, LEE Y H, PARK H, et al. Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin[J]. Advanced Materials, 2016, 28(5):930-935.
doi: 10.1002/adma.v28.5 |
[65] | CHEN Y, LIU Y, REN J, et al. Conformable core-shell fiber tactile sensor by continuous tubular deposition modeling with water-based sacrificial coaxial writing[J]. Materials & Design, 2020, 190:108567. |
[66] |
KARIM N, AFROJ S, MALANDRAKI A, et al. All inkjet-printed graphene-based conductive patterns for wearable e-textile applications[J]. Journal of Materials Chemistry C, 2017, 5(44):11640-11648.
doi: 10.1039/C7TC03669H |
[67] | 莫崧鹰, 何继超. 崭新电子纺织品技术的发展[J]. 纺织导报, 2019(5):34-41. |
MO Songying, HE Jichao. Technological development of advanced electronic textiles[J]. China Textile Leader, 2019(5):34-41. | |
[68] | 周梦瑶. 织物基柔性光开关及储能器件的构建及应用[D]. 重庆: 西南大学, 2018:1-15. |
ZHOU Mengyao. Construction and application of fabric-based wearable optical switch and energy devices[D]. Chongqing: Southwest University, 2018:1-15. | |
[69] | 王思亮. 可印刷和多功能超级电容器研究[D]. 武汉: 华中科技大学, 2018:1-10. |
WANG Siliang. Studies on printable and multifunctional supercapacitors[D]. Wuhan: Huazhong University of Science and Technology, 2018:1-10. | |
[70] |
JIANG Y, CHENG M, SHAHBAZIAN YASSAR R, et al. Direct ink writing of wearable thermos-responsive supercapacitors with rGO/CNT composite electrodes[J]. Advanced Materials Technologies, 2019, 4(12):1900691.
doi: 10.1002/admt.v4.12 |
[71] |
SHIN S, KUMAR R, ROH J W, et al. High-performance screen-printed thermoelectric films on fabrics[J]. Scientific Reports, 2017, 7(1):7317.
doi: 10.1038/s41598-017-07654-2 |
[72] | KIM S J, WE J H, CHO B J. A wearable thermoelectric generator fabricated on a glass fabric[J]. Energy & Environmental Science, 2014, 7(6):1959. |
[1] | LIANG Jiahao, WU Yingzhu, LIU Haidong, HUANG Meilin, CAI Ruiyan, ZHOU Junjian, XIE Quanpei. Preparation and properties of humidity-sensitive polyurethane fibers with surface electrostatic implantation and adhesion of grapheme [J]. Journal of Textile Research, 2021, 42(06): 63-70. |
[2] | JIANG Zhaohui, LI Yonggui, YANG Zitao, GUO Zengge, ZHANG Zhanqi, QI Yuanzhang, JIN Jian. Research progress in graphene/polymer composite fibers and textiles [J]. Journal of Textile Research, 2021, 42(03): 175-180. |
[3] | YIN Shiyong, BAO Jinsong, TANG Shixi, YANG Yun. Modeling method of cyber physical production system for ring spinning [J]. Journal of Textile Research, 2021, 42(02): 65-73. |
[4] | MA Liyun, WU Ronghui, LIU Sai, ZHANG Yuze, WANG Jun. Preparation and electrical properties of triboelectric nanogenerator based on wrapped composite yarn [J]. Journal of Textile Research, 2021, 42(01): 53-58. |
[5] | YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9. |
[6] | WANG Jilong, LIU Yan, JING Yuanyuan, XU Qingli, QIAN Xiangyu, ZHANG Yihong, ZHANG Kun. Advances in fiber-based wearable electronic devices [J]. Journal of Textile Research, 2020, 41(12): 157-165. |
[7] | XIAO Yuan, WANG Pan, ZHANG Wei, ZHANG Chengkun. Research on forming process of bulge at start of jet printing conductive circuit on fabric surfaces [J]. Journal of Textile Research, 2020, 41(12): 81-86. |
[8] | CHEN Hui, WANG Xi, DING Xin, LI Qiao. Design of temperature-sensitive garment consisting of full fabric sensing networks [J]. Journal of Textile Research, 2020, 41(03): 118-123. |
[9] | WU Ronghui, MA Liyun, ZHANG Yifan, LIU Xiangyang, YU Weidong. Strain sensor based on silver nanowires coated yarn with chain stitch structure [J]. Journal of Textile Research, 2019, 40(12): 45-49. |
[10] | LI Siming, WU Guanzheng, HU Yujie, FANG Meiqi, HE Luxiang, HE Yan, XIAO Xueliang. Preparation of pressure distribution monitoring socks and related sensing properties [J]. Journal of Textile Research, 2019, 40(07): 138-144. |
[11] | AN Fangfang, FANG Kuanjun, LIU Xiuming, CAI Yuqing, HAN Shuang, YANG Haizhen. Effect of wool fabric protease modification on droplet spreading and color performance [J]. Journal of Textile Research, 2019, 40(06): 58-63. |
[12] | . Big-data-driven framework for intelligent textile manufacturing [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 159-165. |
[13] | . Experimental research on deposition process of micro-droplet jet printing on fabric surface [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(05): 139-144. |
[14] | . Influence of inkjet printing parameters on imagine definition of coated pigment ink inkjet printing [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(08): 72-76. |
[15] | . Improve color fastness of inkjet printing textiles using pigment ink [J]. Journal of Textile Research, 2015, 36(02): 141-147. |
|