Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (07): 89-94.doi: 10.13475/j.fzxb.20200702006

• Textile Engineering • Previous Articles     Next Articles

Technological model establishment and system realization of weft-knitted products

SHEN Yingle, CONG Honglian(), YU Xuliang, ZHENG Peixiao   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2020-07-07 Revised:2021-03-05 Online:2021-07-15 Published:2021-07-22
  • Contact: CONG Honglian E-mail:cong-wkrc@163.con

Abstract:

In order to develop a weft-knitted product design system, this paper studies the process design model of weft knits based on studying the design characteristics and the structural principle of style forming. The research content includes the mathematical modeling method for weft knitted product pattern process, the mathematical models of design, and creation of process pattern diagram respectively.The information of the pattern was described in mathematically, and the structural pattern diagram describes the relationship between the pattern diagram and the knitting row and visually represents the knitting state of the yarn. The design of the overlapping pattern gives more dimensional information and can control the movement of the motor and yarn finger at the same time. Combined with the design model, the process design of the product was realized through the function of color block partition organization, filling and element mapping, which simplified the process design process and realized the standard and efficient weft knitted product design system.

Key words: weft-knitted, seamless product, mathematical model, design system

CLC Number: 

  • TS941.64

Fig.1

Schematic diagram of design model"

Fig.2

Design pattern"

Tab.1

Mathematical expressions of knitting needle information of seamless plating product"

pk [p(1,u,v), p(2,u,v)]T
黑2 [0,0]T
绿3 [2,2]T
红4 [1,0]T
黄5 [2,2]T
蓝6 [2,0]T
紫7 [2,2]T

Fig.3

Schematic diagram of knitting needle selection system"

Fig.4

Mathematical expressions of tuck stitch pattern. (a)Mathematical matrix of knit pattern; (b)Mathematical matrix of structure pattern"

Fig.5

Multidimensional information of knit pattern"

Fig.6

Flow chart of weft filling"

Fig.7

Pattern design interface"

Fig.8

Color configuration interface"

[1] 张佩华. 无缝针织产品及其技术的发展[C]// 全国针织技术交流会论文集. 无锡: 江南大学针织技术教育部研究中心, 2015: 15-22.
ZHANG Peihua. Seamless knitting products and the development of its technology[C]// Paper Collection of 2015 National Knitting Technology Exchange Conference. Wuxi: Engineering Research Center for Knitting Technology, Ministry of Education,Jiangnan University, 2015: 15-22.
[2] 郑东伟, 徐英莲. SANTONI全成形无缝内衣机LVDT参数值对织物部分结构参数的影响[J]. 浙江理工大学学报, 2009(1):23-26.
ZHENG Dongwei, XU Yinglian. The influence of LVDT parameters of SANTONI fully formed seamless underwear machine on some fabric structural parameters[J]. Journal of Zhejiang Sci-Tech University, 2009(1):23-26.
[3] 周苏萌, 焦青保, 王府梅, 等. 无缝针织服装面料结构参数与成衣尺寸的预测[J]. 纺织学报, 2009, 30(2):42-47.
ZHOU Sumeng, JIAO Qingbao, WANG Fumei, et al. Fabric structure and finished size prediction for seamless knitted garments[J]. Journal of Textile Research, 2009, 30(2):42-47.
[4] 赵灿. 无缝针织内衣的尺寸特性研究[D]. 上海:东华大学, 2013: 21-25.
ZHAO Can. Research on the dimensional properties of seamless knitted underwear[D]. Shanghai:Donghua University, 2013: 21-25.
[5] YAN Y X, FENG Y N, JIN Z M, et al. The research and development of seamless knitted shapewears made of PTT filament[J]. International Journal of Clothing Science and Technology, 2017, 29(1):106-122.
doi: 10.1108/IJCST-05-2015-0064
[6] 翟亚超. 无缝内衣织物拉伸与弹性回复性能研究[D]. 上海:东华大学, 2015: 33-34.
ZHAI Yachao. Investigation on tensile and elastic recovery properties of seamless underwear knitted fabrics[D]. Shanghai:Donghua University, 2015: 33-34.
[7] 张茜. 无缝针织运动服的开发与舒适性能研究[D]. 上海:东华大学, 2016: 16-19.
ZHANG Qian. Development and comfort investigation of seamless knitted sportswear[D]. Shanghai:Donghua University, 2016: 16-19.
[8] 王薇, 蒋高明, 高梓越, 等. 纬编提花织物计算机辅助设计模型与算法[J]. 纺织学报, 2018, 39(3):161-166.
WANG Wei, JIANG Gaoming, GAO Ziyue, et al. Computer aided design system model and algorithm of weft knitted jacquard fabrics[J]. Journal of Textile Research, 2018, 39(3):161-166.
[9] 汝欣, 史伟民, 彭来湖, 等. 无缝针织内衣机的花型准备系统及数据安全[J]. 纺织学报, 2016, 37(11):130-135.
RU Xin, SHI Weimin, PENG Laihu, et al. Pattern preparation system of seamless underwear knitting machine and data security[J]. Journal of Textile Research, 2016, 37(11):130-135.
[10] 丁坤. 针织无缝内衣机人机交互系统及联网技术研究[D]. 杭州:浙江理工大学, 2018: 28-33.
DING Kun. Research on human-computer interaction system and networking technology of knitted seamless underwear machine[D]. Hangzhou: Zhejiang Sci-Tech University, 2018: 28-33.
[11] 许少宁, 汝欣. 无缝内衣机控制系统设计[J]. 现代纺织技术, 2016, 24(6):51-55.
XU Shaoning, RU Xin. Control system design of seamless underwear machine[J]. Advanced Textile Technology, 2016, 24(6):51-55.
[12] 徐巧, 丛洪莲, 张爱军, 等. 纬编针织物CAD设计模型的建立与实现[J]. 纺织学报, 2014, 35(3):136-140,144.
XU Qiao, CONG Honglian, ZHANG Aijun, et al. Establishment and implementation of weft-knitted fabric's design model in CAD system[J]. Journal of Textile Research, 2014, 35(3):136-140,144.
[13] 蒋高明. 互联网针织CAD原理与应用[M]. 北京: 中国纺织出版社, 2019: 33-35.
JIANG Gaoming. Principle and application of internet knitting CAD[M]. Beijing: China Textile & Apparel Press, 2019: 33-35.
[1] ZHOU Mengmeng, JIANG Gaoming, GAO Zhe, ZHENG Peixiao. Research progress in weft-knitted biaxial tubular fabric reinforced composites [J]. Journal of Textile Research, 2021, 42(07): 184-191.
[2] QIAO Cancan, JIANG Yaming, QI Yexiong, LIN Wenni, ZHANG Ye. Characterization of shock wave propagation in ceramic reinforced weft-knitted biaxial multilayer yarnlining fabric and woven fabrics composites [J]. Journal of Textile Research, 2021, 42(05): 84-89.
[3] CUI Wen, LI Xiaohui. Relationship between garment dart and breast feature of female body [J]. Journal of Textile Research, 2021, 42(04): 139-143.
[4] ZHOU Qihong, SUN Baotong, CEN Junhao, ZHAN Qichen. Measurement method of winding density of cheese package based on laser scanning and modeling [J]. Journal of Textile Research, 2021, 42(01): 96-102.
[5] XIANG Zhong, WANG Yuhang, WU Jinbo, QIAN Miao, HU Xudong. Research progress in detection of hydrogen peroxide concentration [J]. Journal of Textile Research, 2020, 41(10): 197-204.
[6] XU Yunlong, XIA Fenglin. Influence of interval distance of double-needle bed warp-knitting machine on yarn demand [J]. Journal of Textile Research, 2019, 40(08): 151-156.
[7] HAN Xiaoxue, MIAO Xuhong. Longitudinal electrical physical properties of spandex weft-knitted conductive fabric [J]. Journal of Textile Research, 2019, 40(04): 60-65.
[8] WAN Ailan, MIAO Xuhong, MA Pibo, CHEN Qing, CHEN Fangfang. Design and properties of functional weft-knitted twill denim fabric [J]. Journal of Textile Research, 2019, 40(04): 55-59.
[9] . Prediction model on tensile strength of air jet vortex spinning yarn and its verification [J]. Journal of Textile Research, 2018, 39(10): 32-37.
[10] . Arrangement of garment production line by particle swarm algorithm [J]. Journal of Textile Research, 2018, 39(10): 120-124.
[11] . Modelling and algorithm of weft knitted fabric [J]. Journal of Textile Research, 2018, 39(09): 44-49.
[12] . Study on redesign system of overstocked garments [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 125-130.
[13] . Modeling and numerical simulating for for residual ammonia volatilization from yarn bobbin [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 149-154.
[14] . Modeling and tensile performance of negative Poissin's ratio warp-knitted spacer structures based on mesh structure [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 59-65.
[15] . Internet-based computer-aided design system for weft knitted fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 150-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!