Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (04): 155-161.doi: 10.13475/j.fzxb.20200702207

• Apparel Engineering • Previous Articles     Next Articles

Selection of three-dimensional body scanner based on analytic hierarchy process

ZHAO Qian1,2, DENG Yongmei1,2()   

  1. 1. Apparel & Art Design College, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Shaoxing Keqiao West-Tex Textile Industry Innovative Institute, Shaoxing, Zhejiang 312030, China
  • Received:2020-07-09 Revised:2021-01-04 Online:2021-04-15 Published:2021-04-20
  • Contact: DENG Yongmei E-mail:454802955@qq.com

Abstract:

In order to solve the problem of blindness and compromise in the selection of three-dimensional (3-D)body scanners in the field of clothing engineering, a structural selection procedure based on analytic hierarchy process is adopted. By constructing a correlation model and using a 9-level judgment scale, the weight of six 3-D body scanners and their six typical indicators to be selected in a specific environment is evaluated through grading, using the consistency index to verify the effectiveness. A matrix is constructed and the vector weight value is used to rank the scanners' ability to meet the target requirements, and then the scanners with the target requirements are selected. A structural model is set up to verify the structured model. The results show that Kinect has the highest weight proportion, which is 0.236 6, representing the best choice among all the consideration. The indicators of the top three scanners Kinect, Virtus Smart, [TC]2 are compared and analyzed, which will used for analysing the scanning accuracy for future research

Key words: analytic hierarchy process, body measurement, three-dimensional scanner, scanner performance, scanner evaluation

CLC Number: 

  • TS941.17

Tab.1

Performance indicators of mainstream three-dimensional body scanners"

三维人体扫描仪名称 产地 光源 扫描时间/s 精确度/mm 环境要求 价格 兼容性 便携性
CubiCam 香港 普通 <1 4 正常 适中 一般 不方便
[TC]2 美国 普通 8 5~60 黑暗 适中 一般 不方便
Cyberware 美国 激光 17 5 正常 不方便
Virtus Smart 德国 激光 8~20 1~2 正常 不方便
Kinect 美国、法国 红外光 3 30 正常 较低 很好 方便
Hamamatsu Body Line 日本 红外光 10 1 黑暗 较低 一般 不方便

Fig.1

Hierarchical structure of three-dimensional body scanner"

Tab.2

Matrix to judge scale meaning"

标度 含义
1 表示2个元素相比,具有同样的重要性
3 表示2个元素相比,前者比后者稍重要
5 表示2个元素相比,前者比后者明显重要
7 表示2个元素相比,前者比后者极其重要
9 表示2个元素相比,前者比后者强烈重要
2,4,6,8 表示上述相邻判断的中间值

Tab.3

Average random concordant index values"

矩阵阶数 1 2 3 4 5 6 7 8 9 10
RI值 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

Tab.4

Weight of each criterion at programme level"

准则层指标 CubiCam [TC]2 Cyberware Virtus Smart Kinect Hamamatsu Body Line
B1:扫描时间 0.374 9 0.129 8 0.045 9 0.059 5 0.291 5 0.098 4
B2:精确度 0.159 6 0.044 0 0.137 2 0.315 5 0.028 2 0.315 5
B3:环境要求 0.066 0 0.032 7 0.103 3 0.103 3 0.546 5 0.148 3
B4:价格 0.148 0 0.106 9 0.042 1 0.031 8 0.407 2 0.264 0
B5:兼容性 0.067 4 0.038 2 0.195 8 0.195 8 0.453 7 0.049 0
B6:便携性 0.139 4 0.078 6 0.096 8 0.096 8 0.493 4 0.095 1

Fig.2

Case test radar chart"

Fig.3

Results of weight of each indicator for target"

[1] 贺莉文, 尚笑梅. 服用人体数据服务平台的研究现状及发展趋势[J]. 现代丝绸科学与技术, 2016,31(2):68-71.
HE Liwen, SHANG Xiaomei. Research status and development trend of user data service platform[J]. Modern Silk Science & Technology, 2016,31(2):68-71.
[2] 尹彦, 罗冬梅. 基于三维测力台的人体动态姿势稳定性评价方法的研究[C]// 第十届全国体育科学大会论文摘要汇编(二).杭州:中国体育科学学会, 2015: 625-626.
YIN Yan, LUO Dongmei. Research on evaluation method of human dynamic posture stability based on three-dimensional dynamometer[C]// Summary of the 10th National Sports Science Conference:Ⅱ.Hangzhou:China Sport Science Society, 2015: 625-626.
[3] 张亚君, 张皋鹏, 王巍. 基于三维人体模型的服装纸样设计的方法探索[J]. 轻工科技, 2013,29(7):131-132.
ZHANG Yajun, ZHANG Gaopeng, WANG Wei. Research on garment pattern design based on 3D human body model[J]. Light Industry Science and Technology, 2013,29(7):131-132.
[4] 张高美. 基于Pro/E的三维动态仿真在工业设计中的应用[J]. 艺术与设计(理论), 2020,2(5):73-75.
ZHANG Gaomei. Application of 3D dynamic simulation based on Pro/E in industrial design[J]. Art and Design(Theory), 2020,2(5):73-75.
[5] 张文斌, 方方. 服装人体工效学[M].2版. 上海: 东华大学出版社, 2008: 32-41.
ZHANG Wenbin, FANG Fang. Garment ergono-mics[M]. 2nd ed. Shanghai: Donghua University Press, 2008: 32-41.
[6] ANTHONY S W W. Influence of fabric mechanical property on clothing dynamic pressure distribution and pressure comfort on tight-fit sportswear[J]. Fiber, 2004,60(10):293-299.
[7] 赵甜. 基于Vicon三维运动捕捉系统评估立定跳远起跳姿态的合理性[C]// 第十一届全国体育科学大会论文摘要汇编.南京:中国体育科学学会, 2019: 4769-4770.
ZHAO Tian. Rationality evaluation of take-off posture of standing long jump based on vicon 3D motion capture system[C]// Summary of the 11th National Sports Science Conference. Nanjing: China Sport Science Society, 2019: 4769-4770.
[8] 黄锌, 彭嫣. 三维动画技术在水利工程设计中的应用:评《水利水电工程水力机械设计技术研究》[J]. 人民黄河, 2020,42(6):171-172.
HUANG Xin, PENG Yan. Application of 3D animation technology in water conservancy project design: comment on "research on design technology of hydraulic machinery for water conservancy and hydropower engineering"[J]. Yellow River, 2020,42(6):171-172.
[9] 卢鹏, 程伟然, 方启, 等. 三维数字化设计在GIL工程中的应用研究[J]. 电工电气, 2020(5):34-37.
LU Peng, CHENG Weiran, FANG Qi, et al. Research on the application of three-dimensional digital design in GIL project[J]. Electrotechnics Electric, 2020(5):34-37.
[10] 黄美玲, 凌瑞. 乳腺癌术后乳房重建的不同方法与新进展[J]. 西部医学, 2019,31(10):1633-1636.
HUANG Meiling, LING Rui. Different methods and new progress of breast reconstruction after breast cancer surgery[J]. Medical Journal of West China, 2019,31(10):1633-1636.
[11] 刘兵. 运动捕捉技术在影视动画制作中的应用探析[J]. 电视技术, 2018,42(10):46-49.
LIU Bing. Analysis of the application of motion capture technology in movie and TV animation production[J]. Video Engineering, 2018,42(10):46-49.
[12] 杨帆. 三维动画及特效制作在影视艺术中的应用研究[J]. 艺术研究, 2019(6):144-145.
YANG Fan. Research on the application of 3D animation and special effects in film and television art[J]. Art Research, 2019(6):144-145.
[13] 孙卫. 影视动漫设计中3D技术的应用[J]. 艺术科技, 2017,30(12):122.
SUN Wei. Application of 3D technology in animation design[J]. Art Science and Technology, 2017,30(12):122.
[14] 邹奉元, 张颖. 基于不同方法的人体测量数据重复性研究[J]. 纺织学报, 2004,25(4):71-73,140.
ZOU Fengyuan, ZHANG Ying. Research on repeatability of anthropometric data based on different methods[J]. Journal of Textile Research, 2004,25(4):71-73,140.
[15] 余佳佳, 李健. 基于不同人体测量方法的数据一致性和可替换性研究[J]. 纺织学报, 2019,40(9):167-172.
YU Jiajia, LI Jian. Data consistency and replaceability based on different human measurement methods[J]. Journal of Textile Research, 2019,40(9):167-172.
[16] 齐静, 张欣, 应柏安, 等. 三维测量与手工测量的人体数据对比研究[C]// 龙升照,迪隆B S.人-机-环境系统工程创立30周年纪念大会暨第十一届人-机-环境系统工程大会论文集.北京:中国系统工程学会人-机-环境系统工程专业委员会,北京市海淀人-机-环境系统工程研究会, 2011: 103-106.
QI Jing, ZHANG Xin, YING Boan, et al. Study of comparison analysis of the human body measurement by 3D scanning measuring and manual measuring[C]// LONG Shengzhao, DHILLON B S. Man-Machine-Enviroment System Engineering-Proceedings of the 11th conference on Man-Machine-Enviroment System Engineering. Beijing: Man-Machine-Enviroment System Engineering Professional Committee of China Society of Systems Engineering, Beijing Haidian Man-Machine-Enviroment System Engineering Research Association, 2011: 103-106.
[17] VAGOVSKÝ J BURÁNSKY I GÖRÖG A. Evaluation of measuring capability of the optical 3D scanner[J]. Procedia Engineering, 2015,100:1198-1206.
[18] TEODOR Tóth JOZEF Živčák. A comparison of the outputs of 3D scanners[J]. Procedia Engineering, 2014,69:390-398.
[19] BARBERO B R, URETA E S. Comparative study of different digitization techniques and their accuracy[J]. Computer-Aided Design, 2010,43(2):188-206.
[20] 甘应进, 陈东生, 孟爽, 等. 非接触式三维人体计测现状[J]. 纺织学报, 2005,26(3):145-146,161.
GAN Yingjin, CHEN Dongsheng, MENG Shuang, et al. Recent development of non-touch 3D body measure-ment[J]. Journal of Textile Research, 2005,26(3):145-146,161.
[21] 苏军强, 袁卫娟, 刘国联. 三维人体扫描仪性能评价[J]. 纺织导报, 2010(1):77-78.
SU Junqiang, YUAN Weijuan, LIU Guolian. Performance evaluation of 3D body scanner[J]. China Textile Leader, 2010(1):77-78.
[22] LUCA Di Angelo, PAOLO Di Stefano, LUCIANO Fratocchi, et al. An AHP-based method for choosing the best 3D scanner for cultural heritage applications[J]. Journal of Cultural Heritage, 2018,34:109-115.
[23] 郭云昕, 张微, 刘咏梅, 等. 三维人体测量技术的现状和比较[J]. 国际纺织导报, 2016, 44(8):38-40, 42-44,46.
GUO Yunxin, ZHANG Wei, LIU Yongmei, et al. The situation and comparison of three-dimensional body measurement technology[J]. Melliand China, 2016, 44(8):38-40, 42-44,46.
[24] THOMAS L S, MC G H. The analytic hierarchy process-planning, priority setting, resource alloca-tion[J]. Basel:Kandel Abraham, 1983,9(1-3):287.
[25] 夏萍, 汪凯, 李宁秀, 等. 层次分析法中求权重的一种改进[J]. 中国卫生统计, 2011,28(2):151-154,157.
XIA Ping, WANG Kai, LI Ningxiu, et al. An improvement of calculating weight in analytic hierarchy process[J]. Chinese Journal of Health Statistics, 2011,28(2):151-154,157.
[1] CHEN Xiya, ZHAO Ying, CAI Xiaoyu, GU Bingfei. Leg classification for young women based on leg shape characteristics [J]. Journal of Textile Research, 2020, 41(11): 136-142.
[2] ZHENG Tianzi, WANG Jianping. Perceptual research on printing pattern design for clothing [J]. Journal of Textile Research, 2020, 41(08): 101-107.
[3] ZHOU Jie, LI Jian, MA Qiurui, HUANG Xiaojie. Recognition of special template based on improved analytic hierarchy process [J]. Journal of Textile Research, 2019, 40(05): 124-130.
[4] GU Bingfei, YAN Yanhong, SU Junqiang, LIU Guolian. Ease distribution rules of characteristic positions in women's suits [J]. Journal of Textile Research, 2019, 40(05): 107-112.
[5] BAO Chen, MIAO Yongwei, SUN Yuliang, ZHANG Xudong. Automatic measurement of three-dimensional human body based on scattered point cloud [J]. Journal of Textile Research, 2019, 40(01): 120-129.
[6] . Influential factors of upper crotch length in young male's pants [J]. Journal of Textile Research, 2018, 39(09): 115-119.
[7] . Fitting and verifying of males’s back graphics measured by non-contact scanner [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 111-115.
[8] . Calculating method of characteristics girth of young female body by 3-D scanning data [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(05): 110-114.
[9] . Camber features of women's shoulder and influence thereof on fitted clothes' structure [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(10): 94-100.
[10] . Predicting model of young women’s breast surface area [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(10): 101-106.
[11] . Comprehensive assessment methods for women's garment fitness and comfort [J]. Journal of Textile Research, 2016, 37(05): 117-123.
[12] . Survey and analysis on domestic and overseas human body database for garments’ use [J]. Journal of Textile Research, 2015, 36(06): 141-147.
[13] . Construction of recognition model for young females’ hip shapes using probabilistic neural network (PNN) method based on 3-D body measurement [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(4): 100-0.
[14] LI Xiao-Zhi.  Construction of 3-D body surface model based onpPartitioning [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(9): 145-0.
[15] . Experimental study of grating phase-shifting profilometry for body measurement [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(6): 83-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!