Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (11): 197-206.doi: 10.13475/j.fzxb.20200702710

• Comprehensive Review • Previous Articles     Next Articles

Research progress of image processing technology for fabric defect detection

LÜ Wentao1, LIN Qiqi1, ZHONG Jiaying1, WANG Chengqun1, XU Weiqiang2()   

  1. 1. School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. College of Textile Science and Engineering(International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2020-07-10 Revised:2021-07-11 Online:2021-11-15 Published:2021-11-29
  • Contact: XU Weiqiang E-mail:wqxu@zstu.edu.cn

Abstract:

With the enhancement of product quality requirements in the textile industry and the limitations of traditional defect detection methods, the automatic detection of fabric defects based on image processing technology has seen an rapidly development. Compared with traditional technology, the application of image processing technology improves the processing efficiency and realizes the digitization and intelligent manufacturing of the textile industry. This paper introduces the preprocessing technology of fabric images, and summarizes the mainstream methods of fabric defect detection, including structure-based methods, statistics-based methods, spectrum-based methods, model-based methods and learning-based methods. In addition, it reviews the principles of these methods, and examines their advantages and disadvantages and scope of applications. Besides, the paper introduces the existing finished equipment and compares the advantages and disadvantages of these equipment. Difficulties facing the existing image processing technology in the application of the textile industry are analyzed, and prospects of future development are discussed.

Key words: digital image processing, defect detection, fabric defect, image preprocessing, machine vision

CLC Number: 

  • TP181
[1] 贺智明, 彭亚楠. 基于深度学习的织物疵点检测研究进展[J]. 毛纺科技, 2019, 47(8):83-88.
HE Zhiming, PENG Ya'nan. Progress in fabric defect detection based on deep learning[J]. Wool Textile Journal, 2019, 47(8):83-88.
[2] HENRY Y, GRANTHAM K P, NELSON H Y. Automated fabric defect detection: a review[J]. Image and Vision Computing, 2011, 29(7):442-458.
doi: 10.1016/j.imavis.2011.02.002
[3] 王孟涛, 李岳阳, 杜帅. 基于机器视觉的疵点检测方法的研究进展[J]. 现代纺织技术, 2019, 27(5):57-61.
WANG Mengtao, LI Yueyang, DU Shuai. Research progress of defect detection method based on machine vision[J]. Advanced Textile Technology, 2019, 27(5):57-61.
[4] 张素贞, 叶建隆, 邹采荣. 织物图像增强技术的研究[J]. 电子器件, 2011, 34(4):473-476.
ZHANG Suzhen, YE Jianlong, ZOU Cairong. Research on textile image enhancement technique[J]. Chinese Journal of Electron Devices, 2011, 34(4):473-476.
[5] SUN Y, LONG H. Detection of weft knitting fabric defects based on windowed texture information and threshold segmentation by CNN [C]//2009 International conference on Digital Image Processing. Bangkok:IEEE, 2009:292-296.
[6] 梁金祥, 姚桂国, 钟晓勇, 等. 织物疵点图像的直方图处理与增强[J]. 丝绸, 2009(5):35-37.
LIANG Jinxiang, YAO Guiguo, ZHONG Xiaoyong, et al. Enhancement and histogram processing for fabric defect image[J]. Journal of Silk, 2009(5):35-37.
[7] CHENG L, ZHAO L Y, CHEN L, et al. Digital image processing of cotton yarn seriplane [C]// 2010 International Conference on Computer and Information Application. Tianjin:IEEE, 2010:274-277.
[8] GUAN M, ZHONG Z Z, RUI Y N. Automatic defect segmentation for plain woven fabric images [C]//2019 International Conference on Communications, Information System and Computer Engineering (CISCE). Haikou: CISCE, 2019: 465-468.
[9] 杨彬蔚, 陆系群, 陈纯. 一种纺织印染图案的多尺度彩色分割算法[J]. 浙江大学学报(工学版), 2005, 39(4):530-534.
YANG Binwei, LU Xiqun, CHEN Chun. Multiscale color segmentation algorithm for textile images[J]. Journal of Zhejiang University(Engineering Science Edition), 2005, 39(4):530-534.
[10] 诸葛振荣, 徐敏, 刘阳飞. 基于Meanshift 的织物图像分割算法[J]. 纺织学报, 2007, 28(10):108-111.
ZHUGE Zhenrong, XU Min, LIU Yangfei. Fabric image segmentation algorithm based on Meanshift[J]. Journal of Textile Research, 2007, 28(10):108-111.
[11] 李鹏飞, 张宏伟. 基于K-means聚类的纺织品印花图案区域分割[J]. 西安工程大学学报, 2008, 22(5):551-554.
LI Pengfei, ZHANG Hongwei. Research on segmenting color regions in textile printing image based on K-means clustering[J]. Journal of Xi'an Polytechnic University, 2008, 22(5):551-554.
[12] 景军锋, 孟泰, 李鹏飞. 基于模糊C均值聚类的纺织品印花图像分割[J]. 纺织学报, 2012, 33(6):97-100.
JING Junfeng, MENG Tai, LI Pengfei. Textile print image segmentation based on FCM[J]. Journal of Textile Research, 2012, 33(6):97-100.
[13] JING J F, KANG X J, LI P F. Detection of the fabric printing quality based on the machine vision [C]//2010 International Conference on Intelligent Computation Technology and Automation.Changsha:IEEE, 2010:75-78.
[14] ZHANG R L, HU Y, GUO W J, et al. Multi-scale markov random field based fabric image segmentation associate with edge information [C]//2009 Second International Symposium on Computational Intelligence and Design.Changsha: ISCID, 2009:566-569.
[15] 余佶, 唐莉萍, 曾培峰. 基于区域清晰度的纺织纤维图像融合[J]. 计算机应用与软件, 2011, 28(10):245-249.
YU Ji, TANG Liping, ZENG Peifeng. Textile fibre image fusion based on regional clarity[J]. Computer Applications and Software, 2011, 28(10):245-249.
[16] 马侦. 数字图像的融合算法[J]. 电子技术与软件工程, 2018(6):62.
MA Zhen. Digital image fusion algorithm[J]. Electronic Technology & Software Engineering, 2018(6):62.
[17] 田宸玮, 王雪纯, 杨嘉能, 等. 织物瑕疵检测方法研究进展[J]. 计算机工程与应用, 2020, 56(12):8-18.
TIAN Chenwei, WANG Xuechun, YANG Jianeng, et al. Research progress on fabric defect detection methods[J]. Computer Engineering and Applications, 2020, 56(12):8-18.
[18] DIVYADEVI R, KUMAR B V. Survey of automated fabric inspection in textile industries [C]//2019 International Conference on Computer Communication and Informatics (ICCCI). Haikou:IEEE, 2019 :1-4.
[19] ABOUELELA A, ABBAS H M, ELSEEB H. Automated vision system for localizing structural defects in textilefabrics[J]. Pattern Recognition Letters, 2005, 26(10):1435-1443.
doi: 10.1016/j.patrec.2004.11.016
[20] 赵艳, 左保齐. 机器视觉在织物疵点检测上的应用研究综述[J]. 计算机工程与应用, 2020, 56(2):11-17.
ZHAO Yan, ZUO Baoqi. Analysis on application of machine vision in fabric defect defection[J]. Computer Engineering and Applications, 2020, 56(2):11-17.
[21] DING S M, LIU Z F, LI C L. AdaBoost learning for fabric defect detection based on HOG and SVM [C]//2011 International Conference on Multimedia Technology.Hangzhou: IEEE, 2011: 2903-2906.
[22] GAO G, ZHANG D, LI C, et al. A novel patterned fabric defect detection algorithm based on GHOG and low-rank recovery [C]//IEEE 13th International Conference Signal Process (ICSP).New York:IEEE, 2016: 1118-1123.
[23] LI C, GAO G, LIU Z, et al. Defect detection for patterned fabric images based on GHOG and low-rank decomposition[J]. IEEE Access, 2019, 7:83962-83973.
doi: 10.1109/Access.6287639
[24] ARNIA F, MUNADI K. Real time textile defect detection using GLCM in DCT-based compressed images [C]//2015 6th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO).Istanbul: IEEE, 2015: 1-6.
[25] ZHU D, PAN R, GAO W, et al. Yarn-dyed fabric detection based on autocorrelation function and GLCM[J]. Autex Research Journal, 2015, 15:226-232.
doi: 10.1515/aut-2015-0001
[26] HAMDI A A, SAYED M S, FOUAD M M, et al. Fully automated approach for patterned fabric defect detection [C]//2016 Fourth International Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC).Cairo: IEEE, 2016: 48-51.
[27] GUSTIAN D A, ROHMAH N L, SHIDI K G F, et al. Classification of troso fabric using SVM-RBF multi-class method with GLCM and PCA feature extraction [C]//2019 International Seminar on Application for Technology of Information and Communication (iSemantic). Semarang: IEEE, 2019: 17-22.
[28] MAK K L, PENG P, YIU K F C. Fabric defect detection using morphological filters[J]. Image and Vision Computing, 2009. DOI: 10.1016/j.imavis.2009.03.007.
[29] REBHI A, ABID S, FNAIECH F. Fabric defect detection using local homogeneity and morphological image processing [C]//2016 International Image Processing, Applications and Systems (IPAS).Hammamet: IEEE, 2016: 1-5.
[30] GUAN S Q, SHI X H. Fabric defect detection based on wavelet decomposition with one resolution level [C]//2008 International Symposium on Information Science and Engineering. Shanghai: IEEE, 2008: 281-285.
[31] SAKHARE K, KULKARNI A, KUMBHAKARN M K N. Spectral and spatial domain approach for fabric defect detection and classification [C]//2015 International Conference on Industrial Instrumentation and Control (ICIC). Pune: IEEE, 2015: 640-644.
[32] PAN Z, HE N, JIAO Z. FFT used for fabric defect detection based on CUDA [C]//2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Chongqing: IEEE, 2017: 2104-2107.
[33] ISMAIL N, SYAHRIR W M, ZAIN J M, et al. Fabric authenticity method using fast Fourier transformation detection [C]//International Conference on Electrical, Control and Computer Engineering 2011 (InECCE).Pahang: IEEE, 2011: 233-237.
[34] YANG X Z, PANG G K H, YUNG N H C. Fabric defect detection using adaptive wavelet[J]. Optical Engineering, 2001.DOI: 10.1117/1.1517290.
[35] LI Y D, DI X. Fabric defect detection using wavelet decomposition [C]//International Conference on Consumer Electronics.Las Vegas:IEEE 2013: 153-156.
[36] KARLEKAR V V, BIRADAR M S, BHANGALE K B. Fabric defect detection using wavelet filter [C]//2015 International Conference on Computing Communication Control and Automation. Pune: IEEE, 2015: 712-715.
[37] LI Y H, ZHOU X Y. Fabric defect detection with optimal gabor wavelet based on radon [C]//2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). Shenyang: IEEE, 2020: 788-793.
[38] 汤晓庆, 黄开兴, 秦元庆, 等. 基于Gabor滤波器和HOG特征的织物疵点检测[J]. 计算机测量与控制, 2018, 26(9):39-42, 47.
TANG Xiaoqing, HUANG Kaixing, QIN Yuanqing, et al. Fabric defect detection based on gabor filter and HOG feature[J]. Computer Measurement & Contro, 2018, 26(9):39-42, 47.
[39] KUMAR A, PANG G K H. Defect detection in textured materials using Gabor filters[J]. IEEE Transactions on Industry Applications, 2002, 38, 425-440.
doi: 10.1109/28.993164
[40] AGILANDESWARI V, ANUJA J, GEORGE E D, et al. Fabric quality testing using image processing [C]// International Conference on Information Communication and Embedded Systems (ICICES2014). Chennai: IEEE, 2014: 1-4.
[41] 曹桂红, 欧阳颖, 国庆, 等. 基于SIFT算法的织物疵点检测[J]. 信息记录材料, 2019, 20(9):79-81.
CAO Guihong, OUYANG Ying, GUO Qing, et al. Fabric defect detection based on SIFT algorithm[J]. Information Recording Materials, 2019, 20(9):79-81.
[42] VADDIN J, SUBBARAMAN S. Modelling of plain weave fabric structure and its use in fabric defect identification [C]//Proceedings of 2014 European Modelling Symposium. Pisa: IEEE, 2014: 132-137.
[43] OZDEMIR S, ERCIL A. Markov random fields and Karhunen-Loeve transforms for defect inspection of textile products [C]//Proc of the IEEE Conference on Emerging Technologies and Factory Automation. Washington: IEEE, 1996: 697-703.
[44] 杨晓波. 基于GMRF模型的统计特征畸变织物疵点识别[J]. 纺织学报, 2013, 34(4):137-142.
YANG Xiaobo. Fabric defect detection of statistic aberration feature based on GMRF model[J]. Journal of Textile Research, 2013, 34(4):137-142.
[45] KUMAR A. Neural network based detection of local textile defects[J]. Pattern Recognition, 2003, 36(7):1645-1659.
doi: 10.1016/S0031-3203(03)00005-0
[46] JING J F, MA H, ZHANG H H. Automatic fabric defect detection using a deep convolutional neural network[J]. Coloration Technology, 2019.DOI: 135. 10.1111/cote.12394.
[47] OUYANG W, XU B, HOU J, et al. Fabric defect detection using activation layer embedded convolutional neural network[J]. IEEE Access, 2019, 7:70130-70140.
doi: 10.1109/Access.6287639
[48] AN M, WANG S Y, ZHENG L M, et al. Fabric defect detection using deep learning: an improved faster r-approach [C]//2020 International Conference on Computer Vision, Image and Deep Learning. Chongqing: CVIDL, 2020: 319-324.
[49] 李明, 景军锋, 李鹏飞. 应用GAN和Faster R-CNN的色织物缺陷识别[J]. 西安工程大学学报, 2018, 32(6):663-669.
LI Ming, JING Junfeng, LI Pengfei. Yarn-dyed fabric defect detection based on GAN and Faster R-CNN[J]. Journal of Xi'an Polytechnic University, 2018, 32(6):663-669.
[50] ZHANG H, ZHANG L, LI P, et al. Yarn-dyed fabric defect detection with YOLOV2 based on deep convolution neural networks [C]//2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS). Enshi:IEEE, 2018:170-174.
[51] 张丽瑶, 王志鹏, 徐功平. 基于SSD的织物瑕疵检测的研究[J]. 电子设计工程, 2020, 28(6):40-44.
ZHANG Liyao, WANG Zhipeng, XU Gongping. Research on fabric defect detection based on SSD[J]. Electronic Design Engineering, 2020, 28(6):40-44.
[52] ZHU Z W, HAN G J, JIA G Y, et al. Modified denseNet for automatic fabric defect detection with edge computing for minimizing latency[J]. IEEE Internet of Things Journal, 2020, 7(10):9623-9636.
doi: 10.1109/JIoT.6488907
[53] WANG Z, JING J F. Pixel-wise fabric defect detection by CNNs without labeled training data[J]. IEEE Access, 2020, 8:161317-161325.
doi: 10.1109/Access.6287639
[54] HUANG Y Q, JING J F, WANG Z. Fabric defect segmentation method based on deep learning[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70:1-15.
[55] ZHAO Y D, HAO K R, HE H B, et al. A visual long-short-term memory based integrated CNN model for fabric defect image classification[J]. Neurocomputing, 2019, 380:259-270.
doi: 10.1016/j.neucom.2019.10.067
[56] AQSA R, BUSHRA Z, AMINA R, et al. Fabric defect detection using computer vision techniques: a comprehensive review[J]. Mathematical Problems in Engineering, 2020.DOI: 10.1155/2020/8189403.
[57] 蔡鹏, 杨磊, 罗俊丽. 一种基于卷积神经网络模型融合的织物疵点检测方法[J]. 北京服装学院学报(自然科学版), 2020, 40(1):55-62.
CAI Peng, YANG Lei, LUO Junli. Fabric defect detection method based on fusion of convolutional neural network models[J]. Journal of Beijing Institute of Fashion Technology(Natural Science Edition), 2020, 40(1):55-62.
[58] 张继超. 织物疵点判别方法研究与实现[D]. 郑州:中原工学院, 2012: 10-14.
ZHANG Jichao. Study and design for fabric detect[D]. Zhengzhou: Zhongyuan University of Technology, 2012: 10-14.
[59] MEIER R, UHLMANN J, 郭腊梅. Uster Fabriscan织物品质自动检测系统[J]. 国际纺织导报, 1999(3):48-51.
MERER R, UHLMANN J, GUO Lamei. Uster fabriscan automatic quality inspection system for fabrics[J]. Melliand China, 1999(3):48-51.
[60] 刘荣清. 织物疵点自动检验系统的发展和展望[J]. 棉纺织技术, 2017, 45(10):13-15.
LIU Rongqing. Development and prospect of fabric defect automatic inspecting system[J]. Cotton Textile Technology, 2017, 45(10):13-15.
[61] 何志贵, 魏丽琼. I-TEX2000型织物自动检验系统[J]. 国外纺织技术, 2000(12):36-37, 15.
HE Zhigui, WEI Liqiong. I-TEX2000 fabric automatic inspection system[J]. Textile Technology Overseas, 2000(12):36-37, 15.
[62] 姚登辉. 基于机器视觉的织造疵点自动验布机研制[D]. 武汉:武汉纺织大学, 2016: 6-8.
YAO Denghui. Development of automatic weaving defect inspecting machine based on machine vision[D]. Wuhan:Wuhan Textile University, 2016: 6-8.
[63] 马昀, 仲岑然. 织物自动检验系统的发展与应用[J]. 江苏工程职业技术学院学报, 2004(1):17-19.
MA Yun, ZHONG Cenran. The development and application of automated fabric insepection system[J]. Journal of Jiangsu College of Engineering and Technology, 2004(1):17-19.
[64] 织物生产商的质量伙伴:USTER@ Fabric Inspection织物检测展示了顶尖的技术和质量管理专业能力[J]. 纺织导报, 2019(9):58.
The quality partner of fabric manufacturers:USTER@ Fabric Inspection demonstrates top technology and quality management expertise[J]. China Textile Leader, 2019(9):58.
[65] 李彪, 李永红, 吕志华. FS220型光电自动验布机的特点及应用[J]. 棉纺织技术, 2017, 45(7):33-36.
LI Biao, LI Yonghong, LÜ Zhihua. Performance and application of FS220 photoelectric auto cloth inspecting machine[J]. Cotton Textile Technology, 2017, 45(7):33-36.
[66] 马云扬. 基于机器视觉的布匹瑕疵检测系统软件设计[D]. 上海:东华大学, 2019: 2-36.
MA Yunyang. Software design of fabric defect detection system based on machine vision[D]. Shanghai:Donghua University, 2019: 2-36.
[1] LIU Guowei, PAN Ruru, GAO Weidong, ZHOU Jian. Fabric defects segmentation using total variation [J]. Journal of Textile Research, 2021, 42(11): 64-70.
[2] WU Liubo, LI Xinrong, DU Jinli. Research progress of motion trajectory planning of sewing robot based on contour extraction [J]. Journal of Textile Research, 2021, 42(04): 191-200.
[3] TIAN Yuhang, WANG Shaozong, ZHANG Wenchang, ZHANG Qian. Rapid detection method of single-component dye liquor concentration based on machine vision [J]. Journal of Textile Research, 2021, 42(03): 115-121.
[4] FENG Wenqian, LI Xinrong, YANG Shuai. Research progress in machine vision algorithm for human contour detection [J]. Journal of Textile Research, 2021, 42(03): 190-196.
[5] ZHU Lei, REN Mengfan, PAN Yang, LI Botao. Fabric defect detection based on similarity location and superpixel segmentation [J]. Journal of Textile Research, 2020, 41(10): 58-66.
[6] ZHU Shigen, YANG Hongxian, BAI Yunfeng, DING Hao, ZHU Qiaolian. Investigation on automatic deformation inspection system of long and thin parts with hooks [J]. Journal of Textile Research, 2020, 41(10): 158-163.
[7] DI Lan, YANG Da, LIANG Jiuzhen, MA Mingyin. Fabric defect detection method based on primitive segmentation and Gabor filtering [J]. Journal of Textile Research, 2020, 41(09): 59-66.
[8] ZHOU Wenming, ZHOU Jian, PAN Ruru. Yarn-dyed fabric defect detection based on context visual saliency [J]. Journal of Textile Research, 2020, 41(08): 39-44.
[9] ZHANG Jianxin, LI Qi. Online cheese package yarn density detection system based on machine vision [J]. Journal of Textile Research, 2020, 41(06): 141-146.
[10] YANG Enjun, LIAO Yihui, LIU Andong, YU Li. Detection for fabric defects based on low-rank decomposition [J]. Journal of Textile Research, 2020, 41(05): 72-78.
[11] LU Hao, CHEN Yuan. Surface defect detection method of carbon fiber prepreg based on machine vision [J]. Journal of Textile Research, 2020, 41(04): 51-57.
[12] WANG Wensheng, LI Tianjian, RAN Yuchen, LU Ying, HUANG Min. Method for position detection of cheese yarn rod [J]. Journal of Textile Research, 2020, 41(03): 160-167.
[13] JIN Shoufeng, LIN Qiangqiang, MA Qiurui, ZHANG Hao. Method for detecting fluff quality of fabric surface based on BP neural network [J]. Journal of Textile Research, 2020, 41(02): 69-76.
[14] JING Junfeng, ZHANG Junyang, ZHANG Huanhuan, SU Zebin. Defect detection on surface of draw texturing yarn packages in gradient space [J]. Journal of Textile Research, 2020, 41(02): 44-51.
[15] ZHANG Huanhuan, MA Jinxiu, JING Junfeng, LI Pengfei. Fabric defect detection method based on improved fast weighted median filtering and K-means [J]. Journal of Textile Research, 2019, 40(12): 50-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .