Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (03): 169-174.doi: 10.13475/j.fzxb.20200704006

• Machinery & Accessories • Previous Articles     Next Articles

Suppression of high frequency noise of tufted carpet loom based on statistical energy analysis

ZHANG Ziyu, XU Yang(), SHENG Xiaowei, XIE Guosheng   

  1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
  • Received:2020-07-06 Revised:2020-12-04 Online:2021-03-15 Published:2021-03-17
  • Contact: XU Yang E-mail:xuyang@dhu.edu.cn

Abstract:

In order to effectively suppress the high frequency noise of tufted carpet loom, a statistical energy analysis (SEA) was proposed, where a melamine porous sound absorption material was used to suppress high frequency noise. In this research, the SEA model of high frequency noise of tufted carpet loom with 13 structural subsystems and 10 acoustic cavities was established, and then the modal density, internal loss factor and coupling loss factor of each subsystem were determined by using a theoretical calculation method. The vibration acceleration signal of tufted carpet loom was measured to obtain the high frequency noise sound pressure level of SEA model. The validity of SEA model was verified by comparing with the actual sound pressure level of tufted carpet loom, before the surface of tufted carpet loom was adhered with different thickness of melamine porous sound absorbing foam board to achieve noise reduction. The result shows that the method can meet the engineering requirements for high frequency noise suppression, and the noise frequency and the thickness of the melamine porous sound-absorbing material have influence on the results.

Key words: tufted carpet loom, noise suppression, statistical energy analysis, passive noise reduction, porous sound-absorbing material

CLC Number: 

  • TS103.1

Fig.1

Schematic diagram of energy transfer between subsystems"

Fig.2

Flow chart of noise suppression"

Fig.3

SEA model of tufted carpet loom. (a) Structural SEA model; (b) Acoustic cavity SEA model"

Tab.1

Modal density of plate structure subsystem"

编号 子系统 结构性质 简化结构 模态密度/Hz-1
1 顶板 方形平板 平板 0.002 33
2 底板1 方形平板 平板 0.000 41
3 底板2 方形平板 平板 0.000 81
4 内侧板1 方形平板 平板 0.001 12
5 内侧板2 方形平板 平板 0.001 12
6 左侧板 方形平板 平板 0.002 46
7 右侧板 方形平板 平板 0.002 46
8 正面板1 不规则形状板 平板 0.002 41
9 正面板2 不规则形状板 平板 0.000 23
10 正面板3 不规则形状板 平板 0.000 32
11 背面板1 不规则形状板 平板 0.002 71
12 背面板2 不规则形状板 平板 0.000 27
13 背面板3 不规则形状板 平板 0.000 11

Fig.4

Loss factor in board subsystem of tufted carpet loom"

Fig.5

Coupling loss factor in board subsystem of tufted carpet loom"

Fig.6

Test site of tufted carpet loom"

Fig.7

Vibration acceleration excitation spectrum"

Fig.8

Comparison of sound field experiment and simulation results in working area of workers"

Fig.9

Noise reduction experiment platform"

Fig.10

Noise suppression of tufted carpet loom"

[1] 唱斗, 梁武, 王生. 高频稳态噪声对心血管系统影响的调查[J]. 中国职业医学, 2003(2):25-27.
CHANG Dou, LIANG Wu, WANG Sheng. Investigation on the influence of high frequency steady state noise on cardiovascular system[J]. Chinese Occupational Medicine, 2003 (2):25-27.
[2] 陈书明. 轿车中高频噪声预测与控制方法研究[D]. 长春:吉林大学, 2011: 2-11.
CHEN Shuming. Research on prediction and control method of car medium and high frequency noise[D]. Changchun: Jilin University, 2011: 2-11
[3] 朱卫红, 邹元杰, 韩增尧. 混合有限元-统计能量分析方法及其航天应用[M]. 北京: 中国宇航出版社, 2017: 1-12.
ZHU Weihong, ZOU Yuanjie, HAN Zengyao. Hybrid finite element statistical energy analysis method and its aerospace application [M]. Beijing: China Aerospace Press, 2017: 1-12.
[4] 陈书明, 王登峰, 刘波, 等. 汽车车外噪声预测的统计能量分析方法[J]. 机械工程学报, 2010,46(10):88-94.
CHEN Shuming, WANG Dengfeng, LIU Bo, et al. Statistical energy analysis method for prediction of vehicle exterior noise[J]. Journal of Mechanical Engineering, 2010,46(10):88-94.
[5] 胡凡, 车驰东, 李正阳. 基于VA One船舶舱室动力设备空气噪声控制分析[J]. 装备环境工程, 2018,15(12):1-5.
HU fan, CHE Chidong, LI Zhengyang. Analysis of air noise control of power equipment in ship cabin based on VA One[J]. Equipment Environmental Engineering, 2018,15(12):1-5.
[6] 陈曦, 刘刚, 谢伟华, 等. 统计能量分析方法用于卫星天线结构声振响应预示的有效性研究[J]. 航天器环境工程, 2019,36(4):335-339.
CHEN Xi, LIU Gang, XIE Weihua, et al. The effectiveness of statistical energy analysis method in predicting the acoustic and vibration response of satellite antenna structure[J]. Spacecraft Environmental Engineering, 2019,36(4):335-339.
[7] COURTNEY B B. An introduction to statistical energy analysis[J]. Journal of the Acoustical Society of America, 1997,101(4):1779-1789.
doi: 10.1121/1.418074
[8] WANG Dengfeng, CHEN Shuming, QU Wei, et al. Car interior noise prediction and experimentation using statistical energy analysis[J]. Journal of Jilin University (Engineering and Technology Edition), 2009,39(S1):68-73.
[9] 徐洋, 李昂昂, 盛晓伟, 等. 基于近场声全息的纺织装备高速运动机构噪声源识别[J]. 纺织学报, 2019,40(4):129-134.
XU Yang, LI Ang'ang, SHENG Xiaowei, et al. Noise source identification of high speed motion mechanism of Textile equipment based on near field acoustic holography[J]. Journal of Textile Research, 2019,40(4):129-134.
doi: 10.1177/004051757004000206
[10] 苑改红, 王宪成, 侯培中, 等. 三聚氰胺泡沫塑料的吸声性能[J]. 机械工程材料, 2007(9):55-57.
YUAN Gaihong, WANG Xiancheng, HOU Peizhong, et al. Sound absorption properties of melamine foam plastics[J]. Mechanical Engineering Materials, 2007 (9):55-57.
[1] CHEN Shaoyong, XU Yang, SHENG Xiaowei, ZHANG Ziyu. Active noise control for tufted carpet equipment based on filtered least mean square algorithm [J]. Journal of Textile Research, 2020, 41(07): 88-92.
[2] XU Yang, LI Ang'ang, SHENG Xiaowei, SUN Zhijun. Noise source identification of high-speed motion mechanism of textile equipment based on near-field acoustic holography method [J]. Journal of Textile Research, 2019, 40(04): 129-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!