Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (04): 48-54.doi: 10.13475/j.fzxb.20200706307

• Fiber Materials • Previous Articles     Next Articles

Preparation and performance of super absorbent modified cotton fiber membrane

XIE Wanting1, LIU Qihai1,2,3(), JIA Zhenyu1,2,3, ZHU Xiaohua3, WANG Ronghui3   

  1. 1. College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
    2. Guangdong Weiqian Technology Co., Ltd., Foshan, Guangdong 528216, China
    3. Zhanjiang Botai Bio-Chemical Technology Industrial Co., Ltd., Zhanjiang, Guangdong 524051, China
  • Received:2020-07-24 Revised:2021-01-02 Online:2021-04-15 Published:2021-04-20
  • Contact: LIU Qihai E-mail:lqh2003@163.com

Abstract:

In order to prepare super absorbent fiber membranes with higher water absorption and stability, the cotton fibers alkalized by NaOH were modified by the chloroacetic acid to enhance the water absorbence, and then the water-absorbent fibers were dispersed in water to prepare a super absorbent fiber membrane material. The surface structure, chemical structure, crystalline structure, thermal stability, the degree of carboxymethyl substitution, water absorption and mechanical properties of the fiber membrane material were eveluated and analyzed. The results show that alkali treatment to cotton fiber can promote the substitution reaction between chloroacetic acid and cotton fiber, and the amount of chloroacetic acid directly affects the degree of carboxymethyl substitution of cotton fiber, which has an important impact on the improvement in water absorption performance of the membrane. However, too high a dosage will significantly reduce the tensile strength of the fiber membrane. When the degree of carboxymethyl substitution is about 0.264, the shape of the absorbent fiber membrane material remains relatively complete after absorbing water, and has generally good mechanical properties, and its water absorption rate can reach 163.3 times, with the water retention rate reaching more than 73.7 times.

Key words: super absorbent fiber membrane, chloroacetic acid, hydrophilic modification, water-absorbent material, degree of carboxymethyl substitution, cotton fiber

CLC Number: 

  • TS102.6

Fig.1

Schematic diagram of preparation route of super absorbent fiber membrane"

Fig.2

Physical image of super absorbent fiber membrane before and after water absorption. (a) Shape before water absorption; (b)Shape after water absorption; (c) Suspended state after water absorption"

Fig.3

SEM images of cotton and super absorbent fiber membranes before and after modification (×2 000). (a)Unmodified cotton fiber; (b) Modified cotton fiber;(c) Fiber membrane treated by 15% NaOH;(d) Fiber membrane treated by 20% NaOH"

Fig.4

Infrared spectra of super absorbent fiber membranes treated by different mass fractions of NaOH"

Fig.5

Thermal stability curves of super absorbent fiber membranes treated by different mass fractions of NaOH"

Tab.1

Thermal weight loss data of super absorbent fiber membranes treated by different mass fractions of NaOH"

NaOH质量
分数/%
初始质量损失
温度/℃
第2阶段质量
损失温度/℃
第2阶段质量
损失率/%
总质量
损失率/%
0 35~70 332~371 67.6 99.7
15 35~70 257~316 42.9 71.4
18 35~75 252~332 46.3 68.5
20 248~320 37.7 61.9

Fig.6

XRD spectrum of super absorbent fiber membranes treated by different mass fractions of NaOH"

Tab.2

Effect of different mass fraction of NaOH on performance of super absorbent fiber membranes"

NaOH质量
分数/%
羧甲基
取代度
吸水倍率 保水倍率 断裂强度/
MPa
断裂伸长
率/%
10 0.065 46.2 35.9
15 0.168 81.8 48.0 1.21 20.51
18 0.203 115.9 54.3 6.70 28.56
20 0.265 146.7 67.3 10.44 36.54
25 0.268 43.3 35.0 2.41 20.59

Tab.3

Effect of different dosage of chloroacetic acid on performance of super absorbent fiber membranes"

氯乙酸和棉纤
维质量比
羧甲基
取代度
吸水倍率 保水倍率 断裂强
度/MPa
断裂伸长
率/%
0.5∶1 0.157 58.7 34.9
1.0∶1 0.225 82.7 50.4 3.77 5.23
1.5∶1 0.238 125.6 60.0 4.46 39.09
2.0∶1 0.198 109.8 43.4 6.94 28.50
2.5∶1 0.191 81.8 38.0 1.21 6.53

Tab.4

Effects of different reaction temperatures on performance of super absorbent fiber membranes"

反应温
度/℃
羧甲基
取代度
吸水倍率 保水倍率 断裂强
度/MPa
断裂伸长
率/%
55 0.172 70.6 31.3 1.21 26.50
60 0.211 109.8 44.3 3.12 28.51
65 0.248 114.5 63.3 3.61 36.00
70 0.232 88.5 57.1 2.16 27.50
75 0.225 73.0 51.8 2.14 24.00
[1] 徐德增, 李丹, 郭静, 等. 壳聚糖接枝丙烯酸吸水纤维的制备及性能[J]. 大连工业大学学报, 2009,28(5):351-353.
XU Dezeng, LI Dan, GUO Jing, et al. Preparation and properties of chitosan grafted acrylic acid absorbent fiber[J]. Journal of Dalian University of Technology, 2009,28(5):351-353.
[2] LURA P, TERRISI G P. Reduction of fire spalling in high-performance concrete by means of superabsorbent polymers and polypropylene fibers[J]. Cement and Concrete Composites, 2014,49:36-42.
[3] 赵桐辉. 超吸水纤维的制备及其在非织造材料中的应用前景[J]. 福建轻纺, 2011(7):52-54.
ZHAO Tonghui. Preparation of super absorbent fiber and its application prospects in nonwoven materials[J]. The Light & Textile Industries of Fujian , 2011(7):52-54.
[4] 李婷. 超吸水纤维在技术领域的应用[J]. 国际纺织导报, 2018,46(6):10.
LI Ting. Application of super absorbent fiber in technical field[J]. Melliand China, 2018,46(6):10.
[5] 闫瑛, 徐永建. 超吸水性纤维及其在一次性卫生用品领域的应用前景[J]. 纸和造纸, 2013(2):69-73.
YAN Ying, XU Yongjian. Super absorbent fiber and its application prospects in the field of disposable sanitary products[J]. Paper and Paper Making, 2013(2):69-73.
[6] BIDGOLI H, ZAMANI A, JEIHANIPOUR A, et al. Preparation of carboxymethyl cellulose superabsorbents from waste textiles[J]. Fibers & Polymers, 2014,15(3):431-436.
[7] WEI D, LIU Q, LIU Z, et al. Modified nano microfibrillated cellulose/carboxymethyl chitosan composite hydrogel with giant network structure and quick gelation formability[J]. International Journal of Biological Macromolecules, 2019,135:561-568.
pmid: 31102677
[8] 哈丽丹·买买提, 布佐热·克比尔. 纤维素氨基甲酸酯法制备纤维素海绵[J]. 化工学报, 2012,63(5):1637-1642.
HARIDAN Maimat, BOUZORER Kebier. Preparation of cellulose sponge by cellulose carbamate method[J]. CIESC Journal, 2012,63(5):1637-1642.
[9] 王香, 翟羽, 詹微. 羧甲基纤维素钠取代度的测定方法研究[J]. 食品安全质量检测学报, 2015,6(8):3145-3148.
WANG Xiang, ZHAI Yu, ZHAN Wei. Study on the determination method of substitution degree of sodium carboxymethyl cellulose[J]. Journal of Food Safety and Quality Inspection, 2015,6(8):3145-3148.
[10] 戴海玲. 高吸水性医用棉纱布的制备及性能研究[D]. 上海:东华大学, 2014: 17.
DAI Hailing. Preparation and performance study of super absorbent medical cotton gauze[D]. Shanghai:Donghua University, 2014: 17.
[11] 万震, 毛志平. 高亲水棉织物的新型制备方法[J]. 染整技术, 2003,25(4):9-12.
WAN Zhen, MAO Zhiping. A new preparation method of highly hydrophilic cotton fabric[J]. Textile Dyeing and Finishing Journal, 2003,25(4):9-12.
[12] 连素梅, 叶曦雯, 罗忻, 等. 棉纤维结构与理化性能关系分析[J]. 棉花科学, 2018,40(1):48-52.
LIAN Sumei, YE Xiwen, LUO Xin, et al. Analysis of the relationship between cotton fiber structure and physical and chemical properties[J]. Cotton Sciences, 2018,40(1):48-52.
[13] 王剑平. 医用纤维素敷料的改性与性能研究[D]. 青岛:青岛大学, 2015: 28-29.
WANG Jianping. Modification and performance of medical cellulose dressings[D]. Qingdao:Qingdao University, 2015: 28-29.
[14] 史晟, 侯文生, 郜娟, 等. 水热条件下棉纤维的结构演变特性[J]. 精细化工, 2016,33(4):366-371.
SHI Sheng, HOU Wensheng, GAO Juan, et al. Structural evolution characteristics of cotton fiber under hydrothermal conditions[J]. Fine Chemicals, 2016,33(4):366-371.
[15] LIU Yang, XIA Liangjun, ZHANG Qianguo, et al. Structure and properties of carboxymethyl cotton fabric loaded by reduced graphene oxide[J]. Carbohydrate Polymers, 2019,214:117-123.
pmid: 30925979
[16] MARTINEZ Sanz, MARTA Pettolino, FILOMENA Flanagan, et al. Structure of cellulose microfibrils in mature cotton fibres[J]. Carbohydrate Polymers, 2017,175:450-463.
doi: 10.1016/j.carbpol.2017.07.090 pmid: 28917888
[17] 张玲玲, 张军燚, 周乃锋. 高取代度羧甲基松木纤维素制备工艺优化及表征[J]. 浙江理工大学学报, 2014,31(11):610-616.
ZHANG Lingling, ZHANG Junyi, ZHOU Naifeng. Optimization and characterization of preparation process of high substitution carboxymethyl pine cellulose[J]. Journal of Zhejiang Sci-Tech University, 2014,31(11):610-616.
[18] 刘美霞, 胡立霞, 沈华, 等. 木棉纤维中组成物质分布及碱处理前后形态结构的变化[J]. 上海纺织科技, 2019,47(8):1-5.
LIU Meixia, HU Lixia, SHEN Hua, et al. Distribution of constituent substances in kapok fiber and changes in morphological structure before and after alkali treatment[J]. Shanghai Textile Science & Technology, 2019,47(8):1-5.
[1] HU Wen, WANG Di, CHEN Xiaochuan, WANG Jun, LI Yong. Finite element simulation of cotton serrated ginning state based on cottonseed modeling [J]. Journal of Textile Research, 2020, 41(09): 27-32.
[2] ZHANG Mengyang, CHEN Xiaochuan, WANG Jun, LI Yong. Modeling and simulation of cotton micronaire value based on ANSYS CFX [J]. Journal of Textile Research, 2020, 41(07): 29-34.
[3] SHAO Jinxin, ZHANG Baochang, CAO Jipeng. Fiber detection and recognition technology in cotton fiber carding process based on image processing and deep learning [J]. Journal of Textile Research, 2020, 41(07): 40-46.
[4] ZHANG Ge, ZHOU Jian, WANG Lei, PAN Ruru, GAO Weidong. Influencing factors for fiber color measurement by spectrophotometer [J]. Journal of Textile Research, 2020, 41(04): 72-77.
[5] DENG Qianqian, YANG Ruihua, XU Yaya, GAO Weidong. Study on mixing uniformity of fibers in rotor-spun mixed yarns [J]. Journal of Textile Research, 2019, 40(07): 31-37.
[6] . Adsorption properties of cotton fiber functionalized by mesoporous nanoparticle for dyes [J]. Journal of Textile Research, 2018, 39(10): 93-98.
[7] . Parameter optimizing of Stearns-Noechel model in color matching of cotton colored spun yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 31-37.
[8] . Hydrophilic modification of polypropylene nonwoven fabrics by UV curing [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(05): 98-103.
[9] . Characterization of cotton linear density using window function [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 46-51.
[10] . Simple quantitative detection of cationic degree on cotton fiber [J]. Journal of Textile Research, 2016, 37(4): 75-79.
[11] . Study on anti-UV property of cotton fibrics by in-situ generation of TiO2 [J]. Journal of Textile Research, 2016, 37(3): 78-81.
[12] . Preparation and hydrophilic modification of polytetrafluoroethylene hollow fiber membrane [J]. Journal of Textile Research, 2016, 37(2): 35-38.
[13] . Research on compressive force transmission properties and densities-mechanical properties model of cotton fiber assembly [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 19-25.
[14] . Hydrophilic modification of polypropylene fibers prepared by melt electrospinning [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(10): 13-18.
[15] . Application of Stearns-Noechel model on color blending of naturally colored cotton [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(01): 93-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!