Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (03): 102-109.doi: 10.13475/j.fzxb.20200800308

• Textile Engineering • Previous Articles     Next Articles

Wearability of hollow coffee carbon polyester/cotton blended weft plain knitted fabric

ZHANG Chentian1, ZHAO Lianying1, GU Xuefeng2   

  1. 1. College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Ningbo Myfitt Textile Technology Co., Ltd., Ningbo, Zhejiang 315700, China
  • Received:2020-08-03 Revised:2020-10-26 Online:2021-03-15 Published:2021-03-17

Abstract:

In order to study the influence of hollow coffee carbon polyester content on the wearability of hollow coffee carbon polyester fabrics, five blending ratios of hollow coffee carbon polyester/cotton fiber were designed. Ten groups of yarns were made by ring spinning and Siro spinning, and weft plain knitted fabrics of the same specification were made. Fabric bursting, pilling, air permeability, moisture permeability and thermal performance were tested and analyzed. Based on regression analysis, the relationship between content of hollow coffee carbon polyester and fabric bursting, pilling, air permeability, moisture permeability and thermal insulation performance was obtained, and a comprehensive performance evaluation was established to make a comprehensive evaluation for fabric wearability. The results show that with the increase of hollow coffee carbon polyester content, the bursting strength, air permeability, moisture permeability and heat preservation performance of the fabric increases, and the pilling performance become worse, and the comprehensive value of the siro-yarn fabric was always higher than that of ring-yarn fabric. Compared with ordinary poly-cotton blended fabric, hollow coffee carbon polyester/cotton blended fabric has at least 66% higher permeability increased, also 10% higher moisture permeability and 2.6 times higher thermal performance.

Key words: hollow coffee carbon polyester, fiber content, knitted fabric, wearability, functional textiles

CLC Number: 

  • TS102.5

Fig.1

Cross section (a) and longitudinal morphology (b) of hollow coffee carbon polyester"

Tab.1

Fiber parameters"

纤维种类 线密度/dtex 长度/mm 断裂强度/(cN·dtex-1) 断裂伸长率/% 初始模量/(cN·dtex-1) 回潮率/%
中空咖啡碳聚酯纤维 1.67 38 5.12 20.9 37.51 1.54
细绒棉 1.86 30 2.71 10.3 20.10 5.30

Tab.2

Yarn properties"

纱线编号 中空咖啡碳聚酯纤维与棉混纺比 断裂强度/(cN·tex-1) 断裂伸长率/% 回潮率/% 条干不匀变异系数/% 毛羽指数H
a1 20/80 16.2 7.2 6.08 16.24 5.13
a2 40/60 17.0 8.1 5.51 14.89 4.33
a3 50/50 17.6 8.6 5.43 15.03 4.16
a4 60/40 18.8 9.3 5.37 15.49 3.88
a5 80/20 22.1 10.8 2.85 15.40 3.32
b1 20/80 16.7 6.5 7.89 15.45 4.27
b2 40/60 18.7 8.0 6.87 14.69 3.60
b3 50/50 19.1 8.8 6.76 14.78 3.51
b4 60/40 20.9 9.2 6.67 14.85 3.33
b5 80/20 24.9 10.7 3.08 14.96 3.12

Tab.3

Basic fabric parameters"

织物
编号
织物厚度/
mm
横密/
(纵行·(5 cm)-1)
纵密/
(横列·(5 cm)-1)
A1 0.130 68 78
A2 0.128 70 82
A3 0.130 69 80
A4 0.130 71 83
A5 0.131 70 81
B1 0.132 71 82
B2 0.130 69 81
B3 0.131 72 80
B4 0.129 70 80
B5 0.131 72 81

Fig.2

Fitting curves of bursting strength and content of hollow coffee carbon fiber"

Fig.3

Fitting curves of bursting length and content of hollow coffee carbon fiber"

Fig.4

Pilling grading sample. (a)Sample according to 1-2 grade;(b)Sample according to 2-3 grade; (c)Sample according to 3-4 grade; (d)Sample according to 4-5 grade"

Tab.4

Grade for pilling of fabrics级"

试样
编号
不同摩擦次数下的织物起毛起球评级 平均值
125次 500次 1 000次 2 000次 5 000次 7 000次
A1 5 4.5 4 4 3.5 3 4
A2 5 4.5 4 4 3.5 3 4
A3 5 4.5 4 4 3.5 3 4
A4 5 4.5 4 3.5 3 3 3.83
A5 5 4 4 3.5 3 2.5 3.67
B1 5 5 4.5 3.5 3.5 3.5 4.17
B2 5 5 4.5 4.5 4 4 4.5
B3 5 5 4.5 4.5 4 4 4.5
B4 5 4.5 4.5 4.5 4 4 4.42
B5 5 4.5 4.5 4 3.5 3 4.08

Fig.5

Surface pilling photos of sample A1 under different friction times. (a)125 times;(b)500 times;(c)1 000 times; (d)2 000 times;(e)5 000 times;(f)7 000 times"

Fig.6

Fitting curves of pilling and content of hollow coffee carbon fiber"

Fig.7

Fitting curves of air permeability and content of hollow coffee carbon fiber"

Fig.8

Fitting curves of moisture permeability and content of hollow coffee carbon fiber"

Fig.9

Fitting curves of CLO value and content of hollow coffee carbon fiber"

Tab.5

Comprehensive evaluation value of sample performance"

试样编号 综合评价值 试样编号 综合评价值
A1 0.207 B1 0.226
A2 0.217 B2 0.239
A3 0.221 B3 0.246
A4 0.225 B4 0.252
A5 0.232 B5 0.265
[1] 李玉华, 李春光, 贾文芹, 等. 涤棉织物的吸湿排汗抗菌整理[J]. 染整技术, 2018,40(1):30-32.
LI Yuhua, LI Chunguang, JIA Wenqin, et al. Antiseptic finishing of polyester cotton fabric with moisture absorption and sweat elimination[J]. Textile Dyeing and Finishing Journal, 2008,40(1):30-32.
[2] 宋艳辉. 绿色环保纤维的运用研究[J]. 山东纺织经济, 2010(1):56-58.
SONG Yanhui. Application of green environmental fiber[J]. Shandong Textile Economy, 2010(1):56-58.
[3] 咖啡碳纤维面世[J]. 毛纺科技, 2011,39(12):41.
Carbon fiber in coffee[J]. Wool Textile Journal, 2011,39(12):41.
[4] 唐士军. 国内涤纶中空纤维产品状况及发展趋势[J]. 聚酯工业, 2004(2):18-20.
TANG Shijun. Status and development trend of polyester hollow fiber products in China[J]. Polyester Industry, 2004(2):18-20.
[5] 张兵, 吕春祥, 刘耀东, 等. 凝固浴组成对聚丙烯腈基中空中孔纤维结构和性能的影响[J]. 新型炭材料, 2019,34(1):44-50.
ZHANG Bing, LÜ Chunxiang, LIU Yaodong, et al. Effect of solidification bath composition on the structure and properties of polyacrylonitrile based air porous fibers[J]. New Carbon Materials, 2019,34(1):44-50.
[6] 徐征奇, 柯俊安. 创新与环保:S.Caf~科技咖啡纱的研发与应用[C] //“力恒杯”第11届功能性纺织品、纳米技术应用及低碳纺织研讨会论文集.北京:北京纺织工程学会, 2011: 355-358.
XU Zhengqi, KE Jun'an. Innovation and environmental protection:S.Caf~research, development and application of science and technology coffee yarn[C] // Proceedings of the 11th Liheng Cup Symposium on Functional Textiles, Nanotechnology Applications and Low-carbon Textiles.Beijing: Beijing Textile Engineering Society, 2011: 355-358.
[7] 王虹. 德福伦:开创咖啡炭纤维产业链——访上海德福伦化纤有限公司技术中心副主任孔彩珍[J]. 中国纤检, 2013(19):38-39.
WANG Hong. De Fulun: creating the coffee carbon fiber industry chain—interview with kong caizhen, deputy director of technical center of Shanghai Defron Chemical Fiber Co., LTD.[J]. China Fiber Inspection, 2013(19):38-39.
[8] 井沁沁, 沈兰萍, 石煜. 咖啡炭纤维研究现状及展望[J]. 合成纤维, 2019,48(5):9-12.
JING Qinqin, SHEN Lanping, SHI Yu. Research status and prospect of coffee carbon fiber[J]. Synthetic Fiber in China, 2019,48(5):9-12.
[9] 张陈恬, 赵连英, 顾学锋, 等. 混纺比对中空咖啡碳/棉混纺纱性能的影响[J]. 丝绸, 2021,58(1):27-33.
ZHANG Chentian, ZHAO Lianying, GU Xuefeng, et al. Effect of blending ratio on the hollow coffee carbon/cotton blended yarn[J]. Journal of Silk, 2021,58(1):27-33.
[10] 肖琪, 王瑞, 孙红玉, 等. 织物起毛起球机制的理论模型研究进展[J]. 纺织学报, 2020,41(2):172-178.
XIAO Qi, WANG Rui, SUN Hongyu, et al. Research progress of theoretical model of fabric pilling mech-anism[J]. Journal of Textile Research, 2020,41(2):172-178.
[11] WAN A L, YU W D. Effect of fiber morphology and dimensions on fuzzing and pilling of wool knitted fa- brics[C] //Proceedings of the 12th International Wool Research Conference. Beijing: China Textile & Apparel Press, 2010: 44-47.
[12] NAEEM F. Pilling performance improvements of fabrics made with bamboo rayon and bamboo rayon/cotton blends[J]. AATCC Journal of Research, 2018,5(6):8-16.
[13] LI L Y, ZHU M, WEI X. Pilling performance of cashmere knitted fabric of woollen ring yarn and mule yarn[J]. Fibres & Textiles in Eastern Europe, 2014,22(1):74-75.
[14] 李海燕. 涤棉机织物的起毛起球影响因素及调控研究[D]. 天津:天津工业大学, 2019: 11-12.
LI Haiyan. Study on influencing factors and regulation of pilling of polyester cotton woven fabrics[D]. Tianjin:Tiangong University, 2019: 11-12.
[15] GRUJICIC M, CHIYYAJALLU K M, et al. Effect of shear, compaction and nesting on permeability of the orthogonal plain-weave fabric preforms[J]. Materials Chemistry & Physics, 2004,86(2):358-369.
[16] HA M, TOKURA H, YANAI Y, et al. Combined effects of fabric air permeability and moisture absorption on clothing microclimate and subjective sensation during intermittent exercise at 27 degrees[J]. Ergonomics, 1999,42(7):964-979.
pmid: 10424185
[17] 徐宗桓, 李莉. 提高涤纶织物吸湿性的途径[J]. 广东化纤, 1994(4):38-41.
XU Zongheng, LI Li. Ways to improve moisture absorption of polyester fabric[J]. Guangdong Chemical Fiber, 1994(4):38-41.
[18] 张威, 刘智, 李龙. 基于多元回归分析的纬平织物热湿舒适性能[J]. 纺织学报, 2011,32(7):54-59.
ZHANG Wei, LIU Zhi, LI Long. Thermal and humidity comfort performance of weft flat fabric based on multiple regression analysis[J]. Journal of Textile Research, 2011,32(7):54-59.
[1] YANG Yang, YU Xin, ZHANG Weijing, ZHANG Peihua. Evaluation method and prediction model establishment of cooling performance of knitted fabrics [J]. Journal of Textile Research, 2021, 42(03): 95-101.
[2] ZHOU Yingyu, WANG Rui, JIN Gaoling, WANG Wenqing. Research progress of applications of photo-induced surface modification technique in flame retardant fabrics [J]. Journal of Textile Research, 2021, 42(03): 181-189.
[3] LÜ Changliang, HAO Zhiyuan, CHEN Huimin, ZHANG Huile, YUE Xiaoli. Finite element analysis of loop shape in weft knitted fabrics with small deformation based on homogenization theory [J]. Journal of Textile Research, 2021, 42(03): 21-26.
[4] ZHAO Huan, PAN Li, CUI Xiaoshuang. Luminescent properties of rare earth aluminate on fabrics [J]. Journal of Textile Research, 2021, 42(03): 136-142.
[5] DING Zihan, QIU Hua. Preparation and performance of nano-silica modified water-based polyurethane waterproof and moisture-permeable coated fabrics [J]. Journal of Textile Research, 2021, 42(03): 130-135.
[6] MENG Lingling, WEI Qufu, YAN Zhongjie, ZHONG Zhenzhen, WANG Xiaohui, SHEN Jiayu, CHEN Hongwei. Preparation and properties of Ag/ZnO composite film deposited polyester fabrics by magnetron sputtering [J]. Journal of Textile Research, 2021, 42(03): 143-148.
[7] LIU Lidong, LI Xinrong, LIU Hanbang, LI Dandan. Electrostatic adsorption model based on characteristics of weft knitted fabrics [J]. Journal of Textile Research, 2021, 42(03): 161-168.
[8] LIU Libin, LÜ Wangyang, CHEN Wenxing. Catalytic degradation of lignin and lignin model compound by copper complexes in bleaching cotton knitted fabrics [J]. Journal of Textile Research, 2021, 42(03): 1-8.
[9] ZHANG Tengjialu, WU Wei, ZHONG Yi, MAO Zhiping, XU Hong. Effect of open width pretreatment on dyeing property of cotton knitted fabrics [J]. Journal of Textile Research, 2021, 42(03): 9-13.
[10] SUN Yabo, LI Lijun, MA Chongqi, WU Zhaonan, QIN Yu. Simulation on tensile properties of tubular weft knitted fabrics based on ABAQUS [J]. Journal of Textile Research, 2021, 42(02): 107-112.
[11] LIU Haisang, JIANG Gaoming, DONG Zhijia. Simulation and virtual display for few-guide bar yarn dyed fabric based Web [J]. Journal of Textile Research, 2021, 42(02): 87-92.
[12] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[13] LI Xintong, GAO Zhe, GU Hongyang, CONG Honglian. Study on stiffness style of knitted suit fabrics [J]. Journal of Textile Research, 2020, 41(11): 53-58.
[14] ZHANG Yanyan, ZHAN Luyao, WANG Pei, GENG Junzhao, FU Feiya, LIU Xiangdong. Research progress in preparation of durable antibacterial cotton fabrics with inorganic nanoparticles [J]. Journal of Textile Research, 2020, 41(11): 174-180.
[15] MA Feifei. Stab-resistant performance and wearability of composite materials made by discrete resin molding [J]. Journal of Textile Research, 2020, 41(07): 67-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!