Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (06): 198-207.doi: 10.13475/j.fzxb.20200800910
• Comprehensive Review • Previous Articles Next Articles
WANG Xiaobo1, QIAN Xiaoming1(), WANG Lijing2, LIU Yongsheng1, BAI He1
CLC Number:
[1] |
HUANG Dongmei, YANG Hua, QI Zhenkun, et al. Questionnaire on firefighters' protective clothing in China[J]. Fire Technology, 2012, 48(2):255-268.
doi: 10.1007/s10694-011-0214-0 |
[2] | MCLELLAN T M. The efficacy of an air-cooling vest to reduce thermal strain for light armour vehicle personnel[R].Toronto: Defence Research and Development, 2007:1-34. |
[3] | 朱方龙, 樊建彬, 冯倩倩, 等. 相变材料在消防服中的应用及可行性分析[J]. 纺织学报, 2014, 35(8):124-132. |
ZHU Fanglong, FAN Janbin, FENG Qianqian, et al. Application and feasibility analysis of phase change materials for fire-fighting suit[J]. Journal of Textile Research, 2014, 35(8):124-132.
doi: 10.1177/004051756503500205 |
|
[4] | 牛丽, 钱晓明, 范金土, 等. 可降温式消防服的设计与降温效果评价[J]. 纺织学报, 2018, 39(6):111-117. |
NIU Li, QIAN Xiaoming, FAN Jintu, et al. Design of cooling firefighting protective clothing and evaluation on cooling performance[J]. Journal of Textile Research, 2018, 39(6):111-117. | |
[5] | BILLINGHAM J. Heat exchange between man and his environment on the surface of the moon[J]. Journal of the British Interplanetary Society, 1959, 17:297-300. |
[6] | BURTON D R, COLLIER L. The development of water conditioned suits[M]. Farnborough: Royal Aircraft Establishment, 1964:400-403. |
[7] |
FLOURIS A D, CHEUNG S S. Design and control optimization of microclimate liquid cooling systems underneath protective clothing[J]. Annals of Biomedical Engineering, 2006, 34(3):359-372.
doi: 10.1007/s10439-005-9061-9 |
[8] | BURTON D R. Performance of water conditioned suits[J]. Aerospace Medicine, 1966, 37(5):500-504. |
[9] | ALLAN J R. The liquid conditioned suit: A physiological assessment[R]. Farnborough, Hants: RAF Institute of Aviation Medicine, 1966:1-8. |
[10] | WEBB P, ANNIS J A. Bio-thermal responses to varied work programs in men kept thermally neutral by water cooled clothing[R]. Washington: National Aeronautics and Space Administration, 1966:1-65. |
[11] | GOLD A J, ZORNITZER A. Effect of partial body cooling on man exercising in a hot, dry environ-ment[J]. Aerospace Medicine, 1968, 39(9):944-946. |
[12] |
SHVARTZ E, BENOR D. Total body cooling in warm environments[J]. Journal of Applied Physiology, 1971, 31(1):24-27.
doi: 10.1152/jappl.1971.31.1.24 |
[13] | SHVARTZ E. Efficiency and effectiveness of different water cooled suits--a review[J]. Aerospace Medicine, 1972, 43(5):488-491. |
[14] | SHITZER A, CHATO J C, HERTIG B A. Thermal protective garment using independent regional control of coolant temperature[J]. Aerospace Medicine, 1973, 44(1):49. |
[15] | SHVARTZ E, ALDJEM M, BEN-MORDECHAI J, et al. Objective approach to a design of a whole-body, water-cooled suit[J]. Aerospace Medicine, 1974, 45(7):711-715. |
[16] | HARRISON M H, BELYAVIN A J. Operational characteristics of liquid-conditioned suits[J]. Aviation Space & Environmental Medicine, 1978, 49(8):994-1003. |
[17] |
MARTIN H, WERNER Jürgen. Control of liquid cooling garments: technical control of body heat storage[J]. Applied Human Science Journal of Physiological Anthropology, 1996, 15(4):177.
doi: 10.2114/jpa.15.177 |
[18] |
XU Xiaojiang, HEXAMER M, WERNER J. Multi-loop control of liquid cooling garment systems[J]. Ergonomics, 1999, 42(2):282-298.
doi: 10.1080/001401399185658 |
[19] |
KIM D E, LABAT K. Design process for developing a liquid cooling garment hood[J]. Ergonomics, 2010, 53(6):818-828.
doi: 10.1080/00140131003734229 |
[20] | GUO Tinghui, SHANG Baofeng, DUAN Bin, et al. Design and testing of a liquid cooled garment for hot environments[J]. Journal of Thermal Biology, 2015,49-50:47-54. |
[21] | DIONNE J P, SEMENIUK K. Thermal manikin evaluation of liquid cooling garments intended for use in hazardous waste management[C]// MAKRIS A, TEAL W. Waste Management 2003 Symposium. Tucson: Army Soldier and Biological Chemical Command, 2003:1-6. |
[22] | 郑康奇, 姜宏伟. 导热阻燃软质PVC的制备及性能研究[J]. 绝缘材料, 2016, 49(9):42-46. |
ZHENG Kangqi, JIANG Hongwei. Preparation and properties of soft pvc with thermal conductive and flame retardancy[J]. Insulating Materials, 2016, 49(9):42-46. | |
[23] |
SHEN Xiaoning, JI Minzun, ZHANG Shiming, et al. Fabrication of multi-walled carbon-nanotube-grafted polyvinyl-chloride composites with high solar-thermal-conversion performance[J]. Composites Science and Technology, 2019, 170(20):77-84.
doi: 10.1016/j.compscitech.2018.11.029 |
[24] |
JETTÉ F X, DIONNE J P, ROSE J, et al. Effect of thermal manikin surface temperature on the performance of personal cooling systems[J]. European Journal of Applied Physiology, 2004, 92(6):669-672.
doi: 10.1007/s00421-004-1112-7 |
[25] | FRIM J. Heat balance of subjects wearing protective clothing with a liquid- or air-cooled vest[J]. Aviation Space & Environmental Medicine, 1991, 62(5):383-391. |
[26] |
RICHARDSON G, COHEN J B, MCPHATE D C, et al. A personal conditioning system based on a liquid-conditioned vest and a thermoelectric supply system[J]. Ergonomics, 1988, 31(7):1041-1047.
doi: 10.1080/00140138808966743 |
[27] |
WANG Tao, WANG Liang, BAI Lizhan, et al. Experimental study on the performance of a liquid cooling garment with the application of MEPCMS[J]. Energy Conversion and Management, 2015, 103:943-957.
doi: 10.1016/j.enconman.2015.07.043 |
[28] |
BARTKOWIAK G, DABROWSKA A, MARSZALEK A. Assessment of an active liquid cooling garment intended for use in a hot environment[J]. Applied Ergonomics, 2017, 58:182-189.
doi: 10.1016/j.apergo.2016.06.009 |
[29] |
HEXAMER M, WERNER J. Control of liquid cooling garments: technical control of mean skin temperature and its adjustments to exercise[J]. Applied Human Science Journal of Physiological Anthropology, 1997, 16(6):237.
doi: 10.2114/jpa.16.237 |
[30] | NYBERG K L, DILLER K R, WISSLER E H. Automatic control of thermal neutrality for space suit applications using a liquid cooling garment[J]. Aviation Space and Environmental Medicine, 2000, 71(9):904-913. |
[31] |
CAO Huantian, BRANSON D H, PEKSOZ S, et al. Fabric selection for a liquid cooling garment[J]. Textile Research Journal, 2006, 76(7):587-595.
doi: 10.1177/0040517506067375 |
[32] | NUNNELEY S A. Water cooled garments: a review[J]. Space Life Sciences, 1970, 2(3):335-360. |
[33] |
WEBB P, ANNIS J F. Cooling required to suppress sweating during work[J]. Journal of Applied Physiology, 1968, 25(5):489-493.
doi: 10.1152/jappl.1968.25.5.489 |
[34] | STARR J B. Fluidic temperature control for liquid-cooled space suits[M]. Washington: National Aeronautics and Space Administration, 1970:179-189. |
[35] | TROUTMAN S J Jr, WEBB P. Automatic control of water cooled suits from differential temperature measurements final report[R].Washington: NASA Electronics Research Center, 1969:1-36. |
[36] | WEBB P, ANNIS J F, TROUTMAN S J. Automatic control of water cooling in space suits[R]. Washington: National Aeronautics and Space Administration, 1968:1-92. |
[37] |
NYBERG K L, DILLER K R, WISSLER E H. Model of human/liquid cooling garment interaction for space suit automatic thermal control[J]. Journal of Biomechanical Engineering, 2001, 123(1):114-120.
doi: 10.1115/1.1336147 |
[38] |
KUZNETZ L H. Automatic control of human thermal comfort by a liquid-cooled garment[J]. Journal of Biomechanical Engineering, 1980, 102(2):155.
doi: 10.1115/1.3138213 |
[39] |
CHEUVRONT S N, KOLKA M A, CADARETTE B S , et al. Efficacy of intermittent, regional microclimate cooling[J]. Journal of Applied Physiology, 2003, 94(5):1841-1848.
doi: 10.1152/japplphysiol.00912.2002 |
[40] | CROCKER J F, JENNINGS D C. Metabolic heat balances in working men wearing liquid-cooled sealed clothing[C]// WEBB P. 3rd Manned Space Flight Meeting. Houston: NASA, 1964:111-126. |
[41] |
BLAIR D A, GLOVER W E, RODDIE I C. Cutaneous vasomotor nerves to the head and trunk[J]. Journal of Applied Physiology, 1961, 16(1):119-122.
doi: 10.1152/jappl.1961.16.1.119 |
[42] |
HERTZMAN A B. Vasomotor regulation of cutaneous circulation[J]. Physiological Reviews, 1959, 39(2):280.
doi: 10.1152/physrev.1959.39.2.280 |
[43] |
UDAYRAJ, TALUKDAR P, DAS A, et al. Heat and mass transfer through thermal protective clothing - A review[J]. International Journal of Thermal Sciences, 2016, 106:32-56.
doi: 10.1016/j.ijthermalsci.2016.03.006 |
[44] |
ZINGANO B W. A discussion on thermal comfort with reference to bath water temperature to deduce a midpoint of the thermal comfort temperature zone[J]. Renewable energy, 2001, 23(1):41-47.
doi: 10.1016/S0960-1481(00)00101-4 |
[45] |
VEGHTE J H, WEBB P. Body cooling and response to heat[J]. Journal of applied physiology, 1961, 16(2):235-238.
doi: 10.1152/jappl.1961.16.2.235 |
[46] |
KATUNTSEV V P, OSIPOV Y Y, BARER A S, et al. The main results of EVA medical support on the Mir Space Station[J]. Acta Astronautica, 2004, 54(8):577-583.
doi: 10.1016/S0094-5765(03)00231-5 |
[47] |
TANAKA M, BRISSON G U Y R, VOLLE M A. Body temperatures in relation to heart rate for workers wearing impermeable clothing in a hot environment[J]. American Industrial Hygiene Association Journal, 1978, 39(11):885-890.
doi: 10.1080/0002889778507879 |
[48] |
COLBURN D, REIS S E, SUYAMA J, et al. A comparison of cooling techniques in firefighters after a live burn evolution[J]. Prehospital Emergency Care, 2011, 15(2):226-232.
doi: 10.3109/10903127.2010.545482 |
[49] |
HOSTLER D, REIS S E, BEDNEZ J C, et al. Comparison of active cooling devices with passive cooling for rehabilitation of firefighters performing exercise in thermal protective clothing: a report from the fireground rehab evaluation (FIRE) trial[J]. Prehospital Emergency Care, 2011, 14(3):300-309.
doi: 10.3109/10903121003770654 |
[50] |
CARTER J B, BANISTER E W, MORRISON J B. Effectiveness of rest pauses and cooling in alleviation of heat stress during simulated fire-fighting activity[J]. Ergonomics, 1999, 42(2):299-313.
doi: 10.1080/001401399185667 |
[51] |
MCENTIRE S J, SUYAMA J, HOSTLER D. Mitigation and prevention of exertional heat stress in firefighters: a review of cooling strategies for structural firefighting and hazardous materials responders[J]. Prehospital Emergency Care, 2013, 17(2):241-260.
doi: 10.3109/10903127.2012.749965 |
[52] | BENNETT B L, HAGAN R D, HUEY K A, et al. Comparison of two cool vests on heat-strain reduction while wearing a firefighting ensemble[J]. European Journal of Applied Physiology and Occupational Physiology, 1995, 70:322-328. |
[53] |
CHOU C, TOCHIHARA Y, KIM T. Physiological and subjective responses to cooling devices on firefighting protective clothing[J]. European Journal of Applied Physiology, 2008, 104(2):369-374.
doi: 10.1007/s00421-007-0665-7 |
[54] |
CARTER J M, RAYSON M P, WILKINSON D M, et al. Strategies to combat heat strain during and after firefighting[J]. Journal of Thermal Biology, 2007, 32(2):109-116.
doi: 10.1016/j.jtherbio.2006.12.001 |
[55] | 牛丽. 基于具有液冷主动降温作用的消防服设计[D]. 天津: 天津工业大学, 2018:55-69. |
NIU Li. Design of fire protective clothing based on active cooling of liquid cooling[D]. Tianjin: Tiangong University, 2018:55-69. | |
[56] |
KIM J H, COCA A, WILLIAMS W J, et al. Subjective perceptions and ergonomics evaluation of a liquid cooled garment worn under protective ensemble during an intermittent treadmill exercise[J]. Ergonomics, 2011, 54(7):626-635.
doi: 10.1080/00140139.2011.583362 |
[57] | LAWSON L K, CROWN E M, ACKERMAN M Y, et al. Moisture effects in heat transfer through clothing systems for wildland firefighters[J]. International Journal of Occupational Safety & Ergonomics, 2004, 10(3):227-238. |
[58] | 何华玲, 于志财, 张健飞, 等. 含水率对消防服用多层织物系统热蓄积的影响[J]. 纺织学报, 2017, 38(8):108-113. |
HE Hualing, YU Zhicai, ZHANG Jianfei, et al. Influence of moisture content on heat storage performance of multilayer fabric assemblies for firefighters[J]. Journal of Textile Research, 2017, 38(8):108-113. | |
[59] | HE Hualing, YU Zhicai, SONG Guowen. The effect of moisture and air gap on the thermal protective performance of fabric assemblies used by wildland firefighters[J]. Journal of the Textile Institute, 2016, 107(8):1030-1036. |
[60] | 郝习波, 李辉芹, 巩继贤, 等. 单向导湿功能纺织品的研究进展[J]. 纺织学报, 2015, 36(7):157-161. |
HAO Xibo, LI Huiqin, GONG Jixian, et al. Review on unidirectional water transport functional fabrics[J]. Journal of Textile Research, 2015, 36(7):157-161. | |
[61] | 贾亚楠. 消防服隔热层的产品设计及工艺性能研究[D]. 上海: 东华大学, 2016:51-54. |
JIA Yanan. Study on product design and spunlace process of heat insulation layer for fire clothing[D]. Shanghai: Donghua University, 2016:51-54. | |
[62] | 郭庭辉. 液冷服中的流动与传热及其系统研制[D]. 武汉: 华中科技大学, 2015:80-100. |
GUO Tinghui. Flow and heat transfer in liquid cooling garment and its system development[D]. Wuhan: Huazhong University of Science and Technology, 2015:80-100. |
[1] | ZHANG Siyu, YU Li, JIA He, LIU Xin. Free form deformation modeling method and inflation mechanism of folded canopy fabrics [J]. Journal of Textile Research, 2021, 42(07): 108-114. |
[2] | YANG Ruihua, PAN Bo, GUO Xia, WANG Lijun, LI Jianwei. Study on fiber mixing effect in ring spun, rotor and air-jet-vortex spun color blended yarns [J]. Journal of Textile Research, 2021, 42(07): 76-81. |
[3] | WANG Zexing, LI Shuai, TAN Dongyi, MENG Shuo, HE Bin. Effect of cyclic loading treatment on creep behavior of polyvinyl chloride coated membrane [J]. Journal of Textile Research, 2021, 42(07): 101-107. |
[4] | DAI Yang, YANG Nannan, XIAO Yuan. Preparation and properties of resistive flexible humidity sensors using electrospun carbon nanotubes [J]. Journal of Textile Research, 2021, 42(06): 51-56. |
[5] | ZHANG Jianxin, HUANG Gang, HU Xudong. Fuzzy comprehensive evaluation of fabric gloss based on spectral imaging technology [J]. Journal of Textile Research, 2021, 42(06): 106-113. |
[6] | TIAN Liqiang, LIANG Min, LONG Kang, CHEN Xiuqing. Synthesis of nanoscale iron supported on expanded graphite for removal of chromium (Ⅵ) and dyes from water [J]. Journal of Textile Research, 2021, 42(06): 133-139. |
[7] | ZHANG Qianyu, QIN Zhigang, YAN Ruosi, JIA Lixia. Research progress on bulletproof properties of shear thickening fluid/high performance fiber composites [J]. Journal of Textile Research, 2021, 42(06): 180-188. |
[8] | QIN Xiaoxuan, QU Lixin, XIE Chunping. Process design of combed yarn from original and discolored yak hair [J]. Journal of Textile Research, 2021, 42(06): 78-84. |
[9] | HE Yaqin, BI Xuerong, QIAN Xixi, RUAN Jun, YU Chongwen. Simulation study on effect of drafting on sliver unevenness [J]. Journal of Textile Research, 2021, 42(06): 85-90. |
[10] | LUO Xiaolei, LI Ziyan, MA Ya'nan, LIU Lin, KRUCINSKA Izabella, YAO Juming. Progress in ecological flame retardant technology for textiles [J]. Journal of Textile Research, 2021, 42(05): 193-202. |
[11] | YUAN Li, XIONG Ying, GU Qian, WANG Danshu, HUO Da, LIU Junping. Characteristics and factorial study of color transfer between dyed fiber and colored spun yarns [J]. Journal of Textile Research, 2021, 42(05): 122-129. |
[12] | NI Jie, YANG Jianping, YU Chongwen. Effect of ratio of strands twist factor to single yarn twist factor on properties of viscose plied yarns [J]. Journal of Textile Research, 2021, 42(05): 46-50. |
[13] | ZHANG Beilei, SHEN Mingwu, SHI Xiangyang. Preparation and biomedical applications of electrospun short fibers [J]. Journal of Textile Research, 2021, 42(05): 1-8. |
[14] | WANG Lu, HAN Xue, LOU Lin, HE Linghua, ZHOU Xiaohong. Development of electric-heating protective gloves and ergonomic experiments under extreme cold environment [J]. Journal of Textile Research, 2021, 42(05): 150-154. |
[15] | ZUO Yajun, CAI Yun, WANG Lei, GAO Weidong. Influence of ply number of cotton yarns on fabrics performance [J]. Journal of Textile Research, 2021, 42(04): 74-79. |
|