Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (05): 9-15.doi: 10.13475/j.fzxb.20200802807

• Fiber Materials • Previous Articles     Next Articles

Photocatalytic performance of iron hexadecachlorophthalocyanine/ polyacrylonitrile composite nanofibers synergistically enhanced by chloride ion

ZHU Zhexin, MA Xiaoji, XIA Lin, LÜ Wangyang(), CHEN Wenxing   

  1. School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2020-08-04 Revised:2021-01-29 Online:2021-05-15 Published:2021-05-20
  • Contact: Lü Wangyang E-mail:luwy@zstu.edu.cn

Abstract:

In order to improve the catalytic activity and reusability of the powder catalyst and effectively remove the organic pollutants in high salinity wastewater, iron hexadecachlorophthalocyanine (FePcCl16)/polyacrylonitrile(PAN) composite nanofibers were prepared using electrospinning technology. The composite nanofibers were characterized by field emission scaning electron microscopy, transmission electron microscopy and X-ray diffraction. Carbamazepine (CBZ) was selected as the model pollutant to study the photocatalytic degradation activity of photoactivated persulfate of composite nanofibers in the presence of chloride ions. The results show that FePcCl16 was well dispersed in PAN nanofibers, and FePcCl16 molecular clustering was successfully avoided to maintain its catalytic performance. Under simulated sunlight, the catalytic activity of composite nanofibers increased with the increase of chloride ion concentration. At higher chloride ion concentrations (6.0-18.0 g/L), CBZ and its degradation products (including potentially toxic chlorinated compounds) can be completely degraded. After 5 degradation recycling tests, FePcCl16/PAN still demonstrate good catalytic degradation performance.

Key words: organic pollutant degradation, electrospinning, iron hexadecachlorophthalocyanine, nanofiber, degradation product, photocatalytic activity, wasterwater treatment

CLC Number: 

  • O634.32

Fig.1

SEM images of PAN and FePcCl16/PAN nanofibers (×20 000)"

Fig.2

TEM images of PAN and FePcCl16/PAN nanofibers (×20 000)"

Fig.3

XRD spectra of PAN nanofibers, FePcCl16/PAN composite nanofibers and FePcCl16 powders"

Fig.4

Photocatalytic performance comparison of FePcCl16 powder and FePcCl16/PAN composite nanofibers"

Fig.5

Effect of chloride ion concentration on photocatalytic degradation of CBZ by FePcCl16/PAN composite nanofibers"

Fig.6

Cyclic catalytic degradation of CBZ by FePcCl16/PAN composite nanofibers"

Tab.1

Degradation of CBZ products by composite nanofibers in presence of chloride ions"

降解产物编号 化学式 质荷比 保留时间/min
A C13H9N 180.082 6 5.72
B C13H9NO 196.077 3 4.33
C C14H9NO 210.092 3 5.93
D C15H10N2O2 251.082 4 3.73
E1 C15H12N2O2 253.098 0 3.20
E2 C15H12N2O2 253.092 8 3.97
E3 C15H12N2O2 253.098 1 4.57
F C15H13NO 224.108 3 4.14
G1 C13H8ClN 214.042 3 6.81
G2 C13H8ClN 214.043 3 6.90
G3 C13H8ClN 214.043 0 7.39

Fig.7

Effect of chloride ion concentration on photocatalytic degradation of chlorinated organic by-products G1, G2 and G3 by FePcCl16/PAN composite nanofibers"

Fig.8

Mass spectra of chlorinated organic by-products G1, G2 and G3"

Fig.9

Proposed CBZ photocatalytic degradation pathway inpresence of NaCl by FePcCl16/PAN composite nanofibers"

[1] GUO Y, ZHOU X, ZHANG Y, et al. Carbamazepine degradation by heterogeneous activation of peroxymonosulfate with lanthanum cobaltite perovskite: performance, mechanism and toxicity[J]. Journal of Environmental Science, 2020,91:10-21.
[2] GARCIA-ESPIONZA J D, MIJAYLOVA-NACHEVA P, AVILES-FLORES M. Electrochemical carbamazepine degradation: effect of the generated active chlorine, transformation pathways and toxicity[J]. Chemosphere, 2018,192:142-151.
doi: 10.1016/j.chemosphere.2017.10.147
[3] AZAROFF A, MONPERRUS M, MIOSSEC C, et al. Microbial degradation of hydrophobic emerging contaminants from marine sediment slurries (capbreton canyon) to pure bacterial strain[J]. Journal of Hazardous Materials, 2021,402:123477.
doi: 10.1016/j.jhazmat.2020.123477
[4] 郭丽, 袁颐进, 冯丽贞, 等. 电活化过硫酸盐降解全氟辛酸及其中间产物的研究[J]. 环境科学学报, 2020,40(6):2045-2054.
GUO Li, YUAN Yijin, FENG Lizhen, et al. Electrochemical activated persulfate to degrade perfluorooctanoic acid and the analysis of intermediate products[J]. Acta Scientiae Circumstantiae, 2020,40(6):2045-2054.
[5] 杨生浛, 毕文龙, 张建, 等. 硫酸根自由基对甲基橙的处理效果及机理[J]. 工业水处理, 2020,40(4):55-59.
YANG Shenghan, BI Wenlong, ZHNAG Jian, et al. Effect and mechanism of sulfate radical on methyl orange treatment[J]. Industrial Water Treatment, 2020,40(4):55-59.
[6] HUANG Y, SHENG B, YANG F, et al. Chlorine incorporation into dye degradation by-product (coumarin) in UV/peroxymonosulfate process: a negative case of end-of-pipe treatment[J]. Chemosphere, 2019,229:374-382.
doi: 10.1016/j.chemosphere.2019.05.024
[7] LAI X, NING X, CHEN J, et al. Comparison of the Fe2+/H2O2 and Fe2+/PMS systems in simulated sludge: removal of PAHs, migration of elements and formation of chlorination by-products [J]. Journal of Hazardous Material, 2020,398:122826.
doi: 10.1016/j.jhazmat.2020.122826
[8] 刘布雷, 张改, 陈卫星, 等. 金属酞菁/TiO2的制备及脱硫性能研究[J]. 应用化工, 2019,48(5):1054-1057.
LIU Bulei, ZHANG Gai, CHEN Weixing, et al. Preparation and desulfurization property of phthalocyanine/TiO2 catysts[J]. Applied Chemical Industry, 2019,48(5):1054-1057.
[9] DONG L, XU T, CHEN W, et al. Synergistic multiple active species for the photocatalytic degradation of contaminants by imidazole-modified g-C3N4 coordination with iron phthalocyanine in the presence of peroxymonosulfate[J]. Chemical Engineering Journal, 2019,357:198-208.
doi: 10.1016/j.cej.2018.09.094
[10] WANG L, LU W, NI D, et al. Solar-initiated photocatalytic degradation of carbamazepine on excited-state hexadecachlorophthalocyanine in the presence of peroxymonosulfate[J]. Chemical Engineering Journal, 2017,330:628-634.
[11] 代岩, 王硕, 田黎明, 等. FePc-TiO2/CS复合材料制备及光催化降解染料废水[J]. 现代化工, 2018,38(7):89-92.
DAI Yan, WANG Shuo, TIAN Liming, et al. Preparation of FePc-TiO2/CS composites and application in photocatalytic degradation of dye wastewater[J]. Modern Chemical Industry, 2018,38(7):89-92.
[12] 钱怡帆, 周堂, 张礼颖, 等. 聚丙烯腈/醋酸纤维素/TiO2复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020,41(5):8-14.
QIAN Yifan, ZHOU Tang, ZHANG Liying, et al. Preparation of polyacrylonitrile/cellulose acetate/TiO2 composite nanofiber membrane and its photocatalytic degradation performance[J]. Journal of Textile Research, 2020,41(5):8-14.
[13] 张梦媛, 黄庆林, 黄岩, 等. 静电纺丝聚四氟乙烯/二氧化钛光催化纳米纤维膜的制备及其应用[J]. 纺织学报, 2019,40(9):1-7.
ZHANG Mengyuan, HUANG Qinglin, HUANG Yan, et al. Electrospun poly(tetrafluoroethylene)/TiO2 photocatalytic nanofiber membrane and its application[J]. Journal of Textile Research, 2019,40(9):1-7.
doi: 10.1177/004051757004000101
[14] KONAREV D V, KUZMIN A V, ISHIKAWA M, et al. Layered salts with iron hexadecachlorophthalocyanineanions-the formation of [{FeCl16Pc}(2)](3-) dimers contain-ing [(FeCl16Pc)-Cl-I(2-)](-) and diamagne-tic [(FeCl16Pc)-Cl-0(2-)](2-)[J]. European Journal of Inorganic Chemistry, 2014,24:3863-3870.
[15] ZHANG T Y, XU B, YAO S, et al. Conversion of chlorine/nitrogen species and formation of nitrogenousdisinfection by-products in the pre-chlorination/post-UV treatment of sulfamethoxazole[J]. Water Research, 2019,160:188-196.
doi: 10.1016/j.watres.2019.05.063
[16] ETO S, TANAKA N, NODA H, et al. Chiral separation of 10, 11-dihydro-10, 11-transdihydroxycarbamazepine, a metabolite of carbamazepine with two asymmetric carbons, in human serum[J]. Journal of Chromatography, 1996,677:328-330.
[17] CHIRON S, MINERO C, VIONE D. Photodegradation processes of the antiepileptic drug carbamazepine, relevant to estuarine waters[J]. Environmental Science & Technology, 2006,40:5977-5983.
doi: 10.1021/es060502y
[18] SUN S, ZENG X, LEMLEY A T. Kinetics and mechanism of carbamazepine degradation by a modified Fenton-like reaction with ferric-nitrilotriacetate complexes[J]. Journal of Hazardous Materials, 2013,252/253:155-165.
doi: 10.1016/j.jhazmat.2013.02.045
[19] MCDOWELL D C, HUBER M M, WAGNER M, et al. Ozonation of carbamazepine in drinking water: ide.pngication and kinetic study of major oxidation products[J]. Environmental Science & Technology, 2005,39:8014-8022.
doi: 10.1021/es050043l
[20] RAO Y F, QU L, YANG H, et al. Degradation of carbamazepine by Fe(II)-activated persulfate process[J]. Journal of Hazardous Materials, 2014,268:23-32.
doi: 10.1016/j.jhazmat.2014.01.010
[21] ZHENG M, XU G, PEI J, et al. EB-radiolysis of carbamazepine: in pure-water with different ionsand in surface water[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014,302:139-147.
doi: 10.1007/s10967-014-3322-8
[22] ZHU Z, LU W, XU T, et al. High-valent iron-oxo complexes as dominant species to eliminate pharmaceuticals and chloride-containing intermediates by the activation of peroxymonosulfate under visible irradiation[J]. Catalysis Letters, 2020,150(5):1355-1367.
doi: 10.1007/s10562-019-03047-4
[1] LIU Xiaoqian, CHEN Yu, ZHOU Huimin, YAN Yuan, XIA Xin. Preparation of polyacrylonitrile conductive nanofiber yarn grafted with acrylic acid using plasma technology [J]. Journal of Textile Research, 2021, 42(05): 109-114.
[2] ZHANG Beilei, SHEN Mingwu, SHI Xiangyang. Preparation and biomedical applications of electrospun short fibers [J]. Journal of Textile Research, 2021, 42(05): 1-8.
[3] WANG Chunhong, LI Ming, LONG Bixuan, CAI Yingjie, WANG Lijian, ZUO Qi. Preparation and performance of polyvinyl alcohol/sodium alginate/berberine medical dressing [J]. Journal of Textile Research, 2021, 42(05): 16-22.
[4] ZHANG Lin, LI Zhicheng, ZHENG Qinyuan, DONG Jun, ZHANG Yin. Preparation and performance of flexible and anisotropic strain sensor based on electrospinning [J]. Journal of Textile Research, 2021, 42(05): 38-45.
[5] YU Meiqiong, YUAN Hongmei, CHEN Lihui. Rheological properties of cellulose/LiCl/ N, N-dimethylacetamide solution [J]. Journal of Textile Research, 2021, 42(05): 23-30.
[6] ZHAO Xinzhe, WANG Shaoxia, GAO Jing, WANG Lu. Preparation and properties of electrospun collagen/polyethylene oxide nanofiber membranes [J]. Journal of Textile Research, 2021, 42(04): 33-41.
[7] CHENG Yue, AN Qi, LI Dawei, FU Yijun, ZHANG Wei, ZHANG Yu. Preparation of SiO2 in-situ doped polyvinylidene fluoride nanofiber membrane and its properties [J]. Journal of Textile Research, 2021, 42(03): 71-76.
[8] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and piezoelectric properties of carbon nanotubes/polyvinylidene fluoride nanofiber membrane [J]. Journal of Textile Research, 2021, 42(03): 44-49.
[9] XING Yusheng, HU Yi, CHENG Zhongling. Preparation and properties of Si/TiO2 composite carbon nanofibers [J]. Journal of Textile Research, 2021, 42(03): 36-43.
[10] GUO Xuesong, GU Jiayi, HU Jianchen, WEI Zhenzhen, ZHAO Yan. Preparation and properties of polyacrylonitrile/carboxyl styrene butadiene latex composite nanofibrous membranes [J]. Journal of Textile Research, 2021, 42(02): 34-40.
[11] CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174.
[12] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[13] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[14] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[15] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan/polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!