Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (05): 66-72.doi: 10.13475/j.fzxb.20200804008

• Textile Engineering • Previous Articles     Next Articles

Development and performance evaluation of bionic knitted winter sports fabrics

WANG Li1,2, ZHANG Bingjie1,2, WANG Jianping1,2,3(), LIU Li4, YANG Yalan1,2, YAO Xiaofeng1,2, LI Qianwen1,2, LU You1,2   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
    3. Shanghai International Institute of Design & Innovation, Tongji University, Shanghai 200092, China
    4. Fashion Accessory Art and Engineering College, Beijing Institute of Fashion Technology, Beijing 100029, China
  • Received:2020-08-07 Revised:2021-01-20 Online:2021-05-15 Published:2021-05-20
  • Contact: WANG Jianping E-mail:wangjp@dhu.edu.cn

Abstract:

To develop knitted winter fabrics with better thermal-wet comfort properties, three types of butterfly scales were selected to construct the geometric structure 3-D model using SolidWorks software. Using 70 dtex(72 f) double Dryarn® polypropylene yarn as surface yarn, 50 dtex Dryarn® polypropylene yarn covered 17 dtex spandex as inside yarn and 150 dtex polyester as surface yarn, 30 dtex polyester covered 20 dtex spandex as inside yarn, 6 knitted fabrics with imitation butterfly scale were developed on the SANTONI MF8-CHN computerized jacquard weft circular knitting machine according to the characteristics of 3-D model. The thermal-wet comfort of bionic knitted fabrics were studied by testing and analyzing the warmth retention, moisture permeability, air permeability and moisture management ability, and the comprehensive evaluation of thermal-wet comfort was carried out by using the fuzzy mathematical evaluation method. The results show that the bionic fabrics of butterfly scale structure with Dryarn® polypropylene yarn as surface yarn not only has good thermal-wet comfort performance, but can also manufactured conveniently and efficiently in terms of knitting technology. The finding broadens the idea of developing functional textiles from the aspect of fabric structure design.

Key words: knitted fabric, 3-D modeling, butterfly scale structure, thermal-wet comfort, fuzzy evaluation

CLC Number: 

  • TS941.71

Fig.1

SEM images of surface configutation in butterfly wing scales. (a) Wing scale in Papilio maackii; (b) Wing scale in Polyommatus eros; (c) Wing scale in Achillidesbianor cramer"

Fig.2

3-D models of three types of butterfly scales. (a) Wavy structure I; (b) Butterfly wing structure Ⅱ; (c) Honeycomb structure Ⅲ"

Fig.3

Knitting artisan of bionic fabrics. (a) Wavy structure I; (b) Butterfly wing structure Ⅱ; (c) Honeycomb structure Ⅲ"

Fig.4

Morphology of biomimetic fabric. (a) Wavy structure I; (b) Butterfly wing structure Ⅱ; (c) Honeycomb structure Ⅲ"

Tab.1

Fabric specification parameters"

组别 织物编号 纱线种类 结构 面密度/
(g·m-2)
厚度/mm 横密/
(纵行·(5 cm)-1)
纵密/
(横列·(5 cm) -1)
A组 1# 聚丙烯纱线 波浪结构 497.3 2.116 66 95
2# 聚丙烯纱线 蝶翅结构 654.1 3.327 62 86
3# 聚丙烯纱线 蜂窝结构 579.3 2.684 75 115
B组 4# 涤纶 波浪结构 492.5 2.215 68 100
5# 涤纶 蝶翅结构 643.9 3.367 65 97
6# 涤纶 蜂窝结构 564.9 2.823 75 125

Tab.2

Test results of fabric warmth"

织物
编号
热阻/
(m2·K·W-1)
传热系数/
(W·m-2·℃-1)
克罗值/
(10-3clo)
保温率/%
A组 1# 63.145 15.855 407.30 52.99
2# 104.765 9.565 676.05 65.13
3# 75.845 13.240 489.25 57.46
B组 4# 57.44 19.29 336.65 49.61
5# 83.88 12.085 541.10 58.79
6# 65.725 15.65 423.95 52.61

Fig.5

Relationship between fabric thickness and warmth retention rate"

Fig.6

Test results of biomimetic fabric air permeability"

Fig.7

Test results of biomimetic fabric moisture permeability"

Tab.3

Test results of fabric moisture management"

组别 织物编号 WTT/s WTB/s ART/(%·s-1) ARB/(%·s-1) MWRT/mm MWRB/mm SST/(mm·s-1) SSB/(mm·s-1) R/%
A组 1# 18.26 46.24 171.21 127.02 5 10 0.272 0.176 102.13
2# 22.31 32.66 69.65 35.90 10 10 0.255 0.333 134.13
3# 27.95 36.84 72.69 37.14 5 5 0.178 0.135 -106.93
B组 4# 17.14 119.95 230.97 0 5 0 0.289 0 -423.37
5# 11.98 119.95 77.60 0 5 0 0.442 0 -429.22
6# 16.28 119.95 81.41 0 5 0 0.204 0 -556.20
[1] CHEN Qing, FAN Jintu, AU Yuhan, et al. Development and characterization of plant structured warp knitted fabric and garment[J]. Fibers and Polymers, 2015,16(6):1430-1440.
doi: 10.1007/s12221-015-1430-x
[2] NIU S C, LI B, MU Z Z, et al. Excellent structure-based mu.pngunction of morpho butterfly wings: a review[J]. Bionic Engineering, 2015,12(2):170-189.
[3] LUTZ T W. The role of butterfly wings in regulation of body temperature[J]. Journal of Insect Physiology. 1975,21(8):1921-1930.
doi: 10.1016/0022-1910(75)90224-3
[4] 房岩, 孙刚, 王同庆, 等. 蝴蝶翅膀表面非光滑鳞片对润湿性的影响[J]. 吉林大学学报(工学版), 2007(3):582-586.
FANG Yan, SUN Gang, WANG Tongqing, et al. Effect of non-smooth scale on surface wet ability of butterfly wings[J]. Journal of Jilin University(Engineering and Technology Edition), 2007(3):582-586.
[5] IGOR K. The fuctional Role of the hollow region of the butterfly pyrameis atalanta(L.) scale[J]. Journal of Bionic Engineering, 2008,9(3):224-230
doi: 10.1016/S1672-6529(11)60105-4
[6] HAN Z W, MU Z Z, LI BO, et al. Bioinspired omnidirectional self-stable reflectors with multiscale hierarchical structures[J]. ACS Applied Materials & Interfaces, 2017,9(34):29285-29294.
[7] TIAN X C, SONG G F, DING X, et al. Photonic structure arrays generated using butterfly wing scales as biological units[J]. Journal of Materials Chemistry, 2015,3(9):1743-1747.
[8] ZHANG S S, LIU X Y, YU W D. Evaluation and model of woven fabric color[J]. Advanced Materials Research, 2013,2176:195-199.
[9] 赵章意. 微纳结构的生色理论及其在纤维上的应用研究[D]. 上海:东华大学, 2015: 11-13.
ZHAO Zhangyi. Research on the mechanism of structural colors with micro-nano structures and its application on fibers[D]. Shanghai:Donghua University, 2015: 11-13.
[10] HUANG Zhongjia, SHI Xinying, WANG Guang, et al. Antireflective design of Si-based photovoltaics via biomimicking structures on black butterfly scales[J]. Solar Energy, 2020,204(1):738-747.
doi: 10.1016/j.solener.2020.05.031
[11] 杜菲菲, 李小辉, 张思严. 防火服用蜂窝夹芯结构织物的热防护性能测评[J]. 纺织学报, 2019,40(3):133-138.
DU Feifei, LI Xiaohui, ZHANG Siyan. Evaluation of thermal protection performance of honeycomb sandwich Structure fabric for fireproof clothing[J]. Journal of Textile Research, 2019,40(3):133-138.
[12] 楚鑫鑫, 肖红, 范杰. 织物凉感等级的主客观评价及确定[J]. 纺织学报, 2019,40(2):105-113.
CHU Xinxin, XIAO Hong, FAN Jie. Using fuzzy comprehensive evaluation method to classify fabrics for coolness level[J]. Journal of Textile Research, 2019,40(2):105-113.
[1] HU Xudong, SONG Yanfeng, RU Xin, PENG Laihu. Modeling and loop length reverse design for reducing diameter tubular weft knitted fabrics [J]. Journal of Textile Research, 2021, 42(04): 80-84.
[2] ZHANG Chentian, ZHAO Lianying, GU Xuefeng. Wearability of hollow coffee carbon polyester/cotton blended weft plain knitted fabric [J]. Journal of Textile Research, 2021, 42(03): 102-109.
[3] YANG Yang, YU Xin, ZHANG Weijing, ZHANG Peihua. Evaluation method and prediction model establishment of cooling performance of knitted fabrics [J]. Journal of Textile Research, 2021, 42(03): 95-101.
[4] LÜ Changliang, HAO Zhiyuan, CHEN Huimin, ZHANG Huile, YUE Xiaoli. Finite element analysis of loop shape in weft knitted fabrics with small deformation based on homogenization theory [J]. Journal of Textile Research, 2021, 42(03): 21-26.
[5] DING Zihan, QIU Hua. Preparation and performance of nano-silica modified water-based polyurethane waterproof and moisture-permeable coated fabrics [J]. Journal of Textile Research, 2021, 42(03): 130-135.
[6] LIU Lidong, LI Xinrong, LIU Hanbang, LI Dandan. Electrostatic adsorption model based on characteristics of weft knitted fabrics [J]. Journal of Textile Research, 2021, 42(03): 161-168.
[7] LIU Libin, LÜ Wangyang, CHEN Wenxing. Catalytic degradation of lignin and lignin model compound by copper complexes in bleaching cotton knitted fabrics [J]. Journal of Textile Research, 2021, 42(03): 1-8.
[8] ZHANG Tengjialu, WU Wei, ZHONG Yi, MAO Zhiping, XU Hong. Effect of open width pretreatment on dyeing property of cotton knitted fabrics [J]. Journal of Textile Research, 2021, 42(03): 9-13.
[9] SUN Yabo, LI Lijun, MA Chongqi, WU Zhaonan, QIN Yu. Simulation on tensile properties of tubular weft knitted fabrics based on ABAQUS [J]. Journal of Textile Research, 2021, 42(02): 107-112.
[10] LIU Haisang, JIANG Gaoming, DONG Zhijia. Simulation and virtual display for few-guide bar yarn dyed fabric based Web [J]. Journal of Textile Research, 2021, 42(02): 87-92.
[11] WANG Ting, GU Bingfei. 3-D modeling of neck-shoulder part based on human photos [J]. Journal of Textile Research, 2021, 42(01): 125-132.
[12] LI Xintong, GAO Zhe, GU Hongyang, CONG Honglian. Study on stiffness style of knitted suit fabrics [J]. Journal of Textile Research, 2020, 41(11): 53-58.
[13] SUN Cenwenjie, NI Jun, ZHANG Zhaohua, DONG Wanting. Ventilation design and thermal-wet comfort evaluation of knitted sportswear [J]. Journal of Textile Research, 2020, 41(11): 122-127.
[14] ZHANG Zhaohua, LI Luyao, AN Ruiping. Thermal-wet comfort evaluation of head and torso ventilation of pipe garment [J]. Journal of Textile Research, 2020, 41(08): 88-94.
[15] CHEN Jiaying, TIAN Xu, PENG Jingjing, FANG Tong, GAO Weihong. Fabrication of structural colors for knitted fabrics [J]. Journal of Textile Research, 2020, 41(07): 117-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!