Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (02): 34-40.doi: 10.13475/j.fzxb.20200804607

• Fiber Materials • Previous Articles     Next Articles

Preparation and properties of polyacrylonitrile/carboxyl styrene butadiene latex composite nanofibrous membranes

GUO Xuesong1,2, GU Jiayi1,2, HU Jianchen1,2, WEI Zhenzhen1,2(), ZHAO Yan1,2   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
    2. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2020-08-10 Revised:2020-11-19 Online:2021-02-15 Published:2021-02-23
  • Contact: WEI Zhenzhen E-mail:zzwei@suda.edu.cn

Abstract:

In order to improve the mechanical properties of electrospun polyacrylonitrile (PAN) nanofiber membranes, a series of PAN/SBR composite nanofibrous membranes were prepared by immersing PAN nanofibrous membranes into carboxyl styrene butadiene latex (SBR) solution. The effects of SBR content on the surface morphology, chemical structure, wettability, thermal and mechanical properties of PAN nanofibrous membranes were investigated. The results reveal that SBR is physically bonded to PAN nanofibers. With the increase of SBR content, the distribution of SBR on the surface of PAN fiber gradually becomes uneven. The addition of SBR has no effect on the thermal stability of PAN membrane, but increases the water contact angle and jeopardizes the hydrophilicity of the membrane. At the same time, adding a small amount of SBR (less than or equal to 15.6%) is found to increase the breaking strength, breaking elongation, initial modulus, breaking energy and puncture resistance of PAN nanofibrous membrane. When the content of SBR is 8.5% of PAN membrane, the breaking energy of the composite membrane is increased by about 4 times, which significantly improves the mechanical properties of PAN nanofiber membrane.

Key words: polyacrylonitrile, carboxyl styrene butadiene latex, electrospinning, nanofibrous membrane, battery separator

CLC Number: 

  • TQ342.93

Fig.1

SEM images of PAN/SBR composite membranes"

Tab.1

Basic parameters of PAN/SBR composite nanofiber membranes"

SBR质量
分数/%
厚度/
μm
密度/
(g·cm-3)
SBR实际质
量分数/%
孔隙率/
%
断裂强
度/MPa
断裂伸长
率/%
初始模
量/MPa
断裂能/
(kJ·m-3)
刺破强
度/cN
PAN 27 0.17 0 82.19 5.88 30.00 85.30 1 189 15.84
0.10 27 0.20 4.91 79.36 6.75 32.25 137.17 1 622 25.32
0.25 27 0.16 6.44 74.72 7.46 32.54 159.18 1 963 24.98
0.50 27 0.29 8.50 77.41 10.91 61.25 232.13 5 420 28.75
1.00 27 0.23 15.67 62.55 12.44 43.16 256.96 4 378 24.98
2.50 27 0.21 32.00 47.64 15.28 22.08 324.66 2 607 25.32

Fig.2

FT-IR spectra of PAN/SBR composite membranes"

Fig.3

TG (a) and DTG (b) curves of PAN/SBR composite membranes"

Fig.4

Water contact angle change of PAN/SBR nanofibrous membranes with contact time of 15 s (a) and 30 s (b)"

Fig.5

Stress-strain curves of PAN/SBR nanofibrous membranes"

Fig.6

Interfacial impedance (a) and bulk impedance (b) spectroscopy of PAN/SBR composite nanofiber membrane"

[1] 钱晓明, 魏楚, 钱幺, 等. 空气过滤用微纳米聚丙烯腈/皮芯型聚乙烯-聚丙烯双组分纤维多层复合材料的制备与性能[J]. 复合材料学报, 2020,37(7):1513-1521.
QIAN Xiaoming, WEI Chu, QIAN Yao, et al. Preparation and properties of micro nano polyacrylo-nitrile/sheath core polyethylene polypropylene bicomponent fiber multilayer composite for air filtra-tion[J]. Acta Materiae Compositae Sinica, 2020,37(7):1513-1521.
[2] ZHANG L F, LUO J, MENKHAUS T J, et al. Antimicrobial nano-fibrous membranes developed from electrospun polyacrylonitrile nanofibers[J]. Journal of Membrane Science, 2011,369(1/2):499-505.
[3] 曹延娟, 辛斌杰, 张杰, 等. 天然纤维素/聚丙烯腈抗菌纳米纤维的制备与表征[J]. 复合材料学报, 2015,32(4):1042-1052.
CAO Yanjuan, XIN Binjie, ZHANG Jie, et al. Preparation and characterization of natural cellulose/polyacrylonitrile antibacterial nanofibers[J]. Acta Materiae Compositae Sinica, 2015,32(4):1042-1052.
[4] ZHANG S C, TANG N, CAO L T, et al. Highly integrated polysulfone/polyacrylonitrile/polyamide-6 air filter for multilevel physical sieving airborne particles[J]. ACS Applied Materials & Interfaces, 2016,8(42):29062-29072.
[5] 王利娜, 娄辉清, 辛长征, 等. 空气过滤用电纺聚偏氟乙烯-聚丙烯腈/熔喷聚丙烯无纺布复合材料的制备及过滤性能[J]. 复合材料学报, 2019,36(2):277-282.
WANG Lina, LOU Huiqing, XIN Changzheng, et al. Preparation and filtration properties of electrospun polyvinylidene fluoride polyacrylonitrile/melt blown polypropylene nonwoven fabric composites for air filtration[J]. Acta Materiae Compositae Sinica, 2019,36(2):277-282.
[6] 吴宽, 王翔, 李子鸣, 等. 基于聚丙烯腈纤维膜的高强度复合隔膜的制备[J]. 武汉大学学报(理学版), 2020(4):331-337.
WU Kuan, WANG Xiang, LI Ziming, et al. Preparation of high strength composite membrane based on polyacrylonitrile fiber membrane [J]. Journal of Wuhan University (Science Edition), 2020 (4):331-337.
[7] 顾翔宇. 微/纳米纤维的静电纺丝法制备及应用[D]. 南京:南京邮电大学, 2019: 11-12.
GU Xiangyu. Preparation and application of micro/nano fibers by electrospinning[D]. Nanjing:Nanjing University of Posts and Telecommunications, 2019: 11-12.
[8] XIAO K, ZHAI Y, YU J, et al. Nanonet-structured poly(m-phenylene isophthalamide)-polyurethane membranes with enhanced thermostability and wettability for high power lithium ion batteries[J]. RSC Advances, 2015,5(68):55478-55485.
[9] WANG Q J, SONG W L, FAN L Z, et al. Facile fabrication of polyacrylonitrile/alumina composite membranes based on triethylene glycol diacetate-2-propenoic acid butyl ester gelpolymer electrolytes for high-voltage lithium-ion batteries[J]. Journal of Membrane Science, 2015,486:21-28.
[10] 孙妮. SBS与SBR改性乳化沥青粘层油性能对比分析[D]. 西安:长安大学, 2014: 2-15.
SUN Ni. Performance comparison and analysis of SBS and SBR modified emulsified asphalt tack coat oil[D]. Xi'an: Chang'an University, 2014: 2-15.
[11] MASLEY Kwaku Julius. 半柔性材料抗裂性能评价与改善措施的研究[D]. 广州:华南理工大学, 2014: 1-30.
MASLEY Kwaku Julius. Study on evaluation and improvement measures of crack resistance of semi flexible materials[D]. Guangzhou: South China University of Technology, 2014: 1-30.
[12] 弋戈. 涂布纸的发展方向和涂布用SBR胶乳[J]. 国际造纸, 2003(5):10-15.
YI Ge. Development trend of coated paper and SBR latex for coating[J]. International Paper, 2003(5):10-15.
[13] 周一龙. BRA/橡胶复合改性沥青混凝土路用性能研究[J]. 山西建筑, 2020,46(14):114-116,156.
ZHOU Yilong. Study on road performance of BRA/rubber composite modified asphalt concrete[J] Shanxi Architecture, 2020,46(14):114-116,156.
[14] ABDOLLAHI M, RAHMATPOUR A, AALAIE J, et al. Structure and properties of styrene-butadienerubber/pristine clay nanocomposites prepared by latex compounding method[J]. e-Polymers, 2007. DOI: 0.1515/epoly.2007.7.1.861.
[15] CHANTAWEE K, RIYAJAN S A. Carboxylated styrene-butadiene rubber adhesion for biopolymer product- based from cassava starch and sugarcane leaves fiber[J]. Industrial Crops and Products, 2018(125):639-647.
[16] RASOUL E N, SAIED N K, MOHAMMADREZA N, et al. Improving mechanical properties of carbon/epoxy composite by incorporating functionalized electrospun polyacrylonitrile nanofibers[J]. Macromolecular Materials and Engineering, 2017. DOI: 10.1002/mame. 201600551.
pmid: 22184499
[17] 马启学, 唐爱玲. 红外光谱在 PAN 氧化纤维结构测定中的应用[J]. 石化技术与应用, 1991(3):187-190.
MA Qixue, TANG Ailing. Application of infrared spectroscopy in the structural determination of PAN oxidized fiber[J]. Petrochemical Technology & Application, 1991 (3):187-190.
[18] 王绮轩. 羧基丁苯胶乳中结合苯乙烯含量的红外光谱测定法[J]. 光谱实验室, 1994(5):40-43.
WANG Qixuan. Determination of bound styrene content in carboxylated styrene butadiene latex by infrared spectrometry[J]. Spectroscopy Laboratory, 1994 (5):40-43.
[19] 李国庆, 李平平, 刘瀚霖, 等. 聚丙烯腈/聚氨酯透明膜的制备及其性能[J]. 纺织学报, 2020,41(3):20-25.
LI Guoqing, LI Pingping, LIU Hanlin, et al. Preparation and properties of polyacrylonitrile/polyurethane transparent membranes[J]. Journal of Textile Research, 2020,41(3):20-25.
[20] GRIBANOV A V, SAZANOV Y N. Polyacrylonitrile: carbonization problems[J]. Russain Journal of Applied Chemistry, 2008,81(6):919-932.
[21] SAFEEDA N V F, GOPINATHAN J, INDUMATHI B, et al. Morphology and hydroscopic properties of acrylic/thermoplastic polyurethane core-shell electrospun micro/nano fibrous mats with tunable porosity[J]. RSC Advances, 2016,6(59):54286-54292.
[22] 赵永春, 陈虎魁. 水果套袋纸抗水涂布胶的研制[J]. 中国胶粘剂, 2001(6):19-21.
ZHAO Yongchun, CHEN Hukui. Preparation of water resistant coating adhesive for fruit bagging paper[J]. Chinese Adhesives, 2001 (6):19-21.
[23] CIESIELSKA D, LIU P. Mechanical, rheological and morphological properties of recycled expanded polystyrene/styrene butadiene rubber blends[J]. Kautschuk Und Gummi Kunststoffe, 2000,53(5):273-276.
[1] CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174.
[2] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[3] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[4] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[5] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan/polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[6] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and performance of flexible sensor made from polyvinylidene fluoride/FeCl3 composite fibrous membranes [J]. Journal of Textile Research, 2020, 41(12): 13-20.
[7] SUN Qian, KAN Yan, LI Xiaoqiang, GAO Dekang. Preparation and performance of colorimetric humidity sensor using polyacrylonitrile/CoCl2 nanofibers [J]. Journal of Textile Research, 2020, 41(11): 27-33.
[8] WANG Liyuan, KANG Weimin, ZHUANG Xupin, JU Jingge, CHENG Bowen. Preparation and properties of composite proton exchange membranes based on sulfonated polyethersulfone nanofibers [J]. Journal of Textile Research, 2020, 41(11): 19-26.
[9] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
[10] WANG Zixi, HU Yi. Preparation and energy storage of porous carbon nanofibers based on ZnCo2O4 [J]. Journal of Textile Research, 2020, 41(11): 10-18.
[11] WANG Yang, CHENG Chunzu, JIANG Li'na, REN Yuanlin, GUO Yingbin. Preparation of durable flame retardant polyacrylonitrile fabrics using UV-induced photo-grafting polymerization combined with sol-gel coating [J]. Journal of Textile Research, 2020, 41(10): 107-115.
[12] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycaprolactone/polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffold [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[13] DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, QIAN Yao, ZOU Zhiwei. Preparation and properties of microfiber synthetic leather base [J]. Journal of Textile Research, 2020, 41(09): 81-87.
[14] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
[15] WU Hong, LIU Chengkun, MAO Xue, YANG Zhi, CHEN Meiyu. Research progress in preparation and application of flexible zirconia nanofibers by electrospinning [J]. Journal of Textile Research, 2020, 41(07): 167-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!