Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (09): 180-186.doi: 10.13475/j.fzxb.20200804707

• Comprehensive Review • Previous Articles     Next Articles

Research and application progress in fire retardant fabric based on polymeric hydrogel

YU Zhicai1,2, LIU Jinru1, HE Hualing1,2,3(), MA Shengnan1, JIANG Huiyu1,2   

  1. 1. College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, Hubei 430200, China
    3. Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2020-08-10 Revised:2021-06-04 Online:2021-09-15 Published:2021-09-27
  • Contact: HE Hualing E-mail:hehualinghe@126.com

Abstract:

In order to improve the fire resistance of textiles, this paper reviews the application of hydrogels as a new type of fire retardant materials, because of the high absorbability of hydrogels with a three-dimensional network. Moreover, the fire-retardant mechanism of hydrogels such as endothermic cooling, gas dilution and oxygen isolation in the process of fire extinguishing was systematically described. According to relevant literature, the novel treatment technology of composite flame-retardant fabric was discussed. It was summarized that flame retardant composite fabrics based on hydrogel have excellent flame-retardant property. This paper critically reviewed and analyzed the challenges and opportunities of hydrogels as flame retardant materials in the field of textile thermal protection. It is found that improving the binding fastness between hydrogels and fabrics, developing self-healing flame retardant hydrogel materials and multifunctional flame retardant hydrogel fabrics call for further research.

Key words: polymeric hydrogel, fire retardant fabric, fire extinguishing mechanism, composite treatment, firefighter protective clothing

CLC Number: 

  • TS102.6

Tab.1

Fire resistant mechanism of various flame retardants and theirs advantages and disadvantages"

阻燃剂 阻燃机制 优点 缺点
卤系阻燃剂 受热分解产物直接改变火焰中的链增长反应,由此达到阻燃目的 阻燃效率高、成本低、用量少 产生有毒的卤化氢气体,不可降解[13]
磷系阻燃剂 受热分解生成不挥发玻璃层或聚合物脱水炭化形成隔离膜,隔绝氧气 低毒,低卤,用量少,效率高[14] 相容性差,热稳定性差,发烟量大,挥发性高
氮系阻燃剂 受热放出N2、NH3、CO2等气体稀释氧气浓度 毒性低,发烟量少,价格低廉 阻燃效率低,需与其他阻燃剂复合产生协同阻燃效果,比如磷-氮阻燃剂[15,16]
硅系阻燃剂 形成无定形硅保护层屏蔽氧气侵入[17] 阻燃性能优异,耐高温,抗氧化,燃烧速度慢[18] 生产工艺较为复杂,难合成,成本高
硼系阻燃剂 硼酸盐熔化覆盖在可燃物表面,隔绝氧气;燃烧释放结合水,吸热冷却降温;改变热分解途径,抑制可燃性气体生成 阻燃效果良好,抑烟效率高,对聚合物的力学性能影响小 单一的阻燃效果不佳,需与其他阻燃剂协同作用[19]
金属氢氧化物 分解产生水蒸气稀释周围氧气浓度;可燃物表面生成氧化物,阻止燃烧 价格低廉,来源广泛,无毒,稳定性高[20] 添加量需求大,导致基体力学性能差
膨胀型阻燃剂 阻燃剂受热后生成蓬松发泡结构的炭层,阻止可燃物与火源之间的热传导;多孔炭层阻止氧气向可燃物表面扩散 环保高效,价格低廉 相容性差,易使可燃物的力学性能和电学性能降低[21]

Fig.1

Schematic of hydrogel fire extinguishing mechanism"

Fig.2

Schematic diagram of direct deposition method"

Fig.3

Schematic diagram of ultraviolet initiation"

[1] 任元林, 张悦, 曾倩, 等. 织物阻燃涂层新工艺的研究进展[J]. 纺织学报, 2017, 38(9):168-173.
REN Yuanlin, ZHANG Yue, ZENG Qian, et al. Research progress on new technology of fabric flame retardant coating[J]. Journal of Textile Research, 2017, 38(9):168-173.
[2] WANG B, LI P, XU J J, et al. Bio-based, nontoxic and flame-retardant cotton/alginate blended fibres as filling materials: thermal degradation properties, flammability and flame-retardant mechanism[J]. Composites, 2020, 194:108038.
[3] 熊驰宇, 史丽敏. 我国纺织品阻燃测试方法及产品标准综述[J]. 山东纺织科技, 2020, 61(1):47-52.
XIONG Chiyu, SHI Limin. Summary of Chinese textile flame retardant test methods and product standards[J]. Shandong Textile Technology, 2020, 61(1):47-52.
[4] WANG D F, ZHONG L, ZHANG C, et al. Eco-friendly synjournal of a highly efficient phosphorus flame retardant based on xylitol and application on cotton fabric[J]. Cellulose, 2019, 26:2123-2138.
doi: 10.1007/s10570-018-2193-5
[5] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(3):100-105.
DING Fang, REN Xuehong. Flame-retardant finishing of polyester fabrics by grafting phosphorus-nitrogen compounds[J]. Journal of Textile Research, 2020, 41(3):100-105.
[6] XU L J, WANG W, YU D. Durable flame retardant finishing of cotton fabrics with halogen-free rganophosphonate by UV photoinitiated thiol-ene click chemistry[J]. Carbohydrate Polymers, 2017, 172:275-283.
doi: 10.1016/j.carbpol.2017.05.054
[7] HUANG Y S, ZHANG W C, DAI X J, et al. Study on water-based fire extinguishing agent formulations and properties[J]. Procedia Engineering, 2012, 45:649-654.
doi: 10.1016/j.proeng.2012.08.217
[8] HU X M, CHENG W M, SHAO Z L, et al. Synjournal and characterization of temperature sensitive hydrogels[J]. E-Polymers, 2015, 15(5):353-360.
doi: 10.1515/epoly-2015-0157
[9] 邓军, 杨漪, 唐凯. 温敏性水凝胶制备及灭火性能研究[J]. 中国矿业大学学报, 2014, 43(1):1-7.
DENG Jun, YANG Yi, TANG Kai. Research on preparation and fire extinguishing performance of temperature-sensitive hydrogel[J]. Journal of China University of Mining & Technology, 2014, 43(1):1-7.
[10] 党力, 吕智慧. 无机阻燃剂的研究进展[J]. 中国塑料, 2018, 32(9):1-8.
DANG Li, LV Zhihui. Research progress on inorganic flame retardant[J]. China Plastics, 2018, 32(9):1-8.
[11] 庄华炜. 未来纺织品的阻燃趋势[J]. 印染, 2016, 42(3):55-56.
ZHUANG Huawei. The future trend of flame retardant of textiles[J]. China Dyeing & Finishing, 2016, 42(3):55-56.
[12] 滕广远, 陈俊宏. 阻燃剂的现状及发展趋势[J]. 化工时刊, 2018, 32(4):28-32.
TENG Guangyuan, CHEN Junhong. Present situation and development trend of flame retardants[J]. Chemical Industry Times, 2018, 32(4):28-32.
[13] ZHANG F X, GAO W W, JIA Y L, et al. A concise watersolvent synjournal of highly effective, durable, andecofriendly flame-retardant coating on cotton fabrics[J]. Carbohydrate Polymers, 2018, 199:256-265.
doi: 10.1016/j.carbpol.2018.05.085
[14] HUANG S, FENG Y J, LI S N, et al. A novel high whiteness flame retardant for cotton[J]. Polymer Degradation and Stability, 2019, 164:157-166.
doi: 10.1016/j.polymdegradstab.2019.03.014
[15] WANG S, DU X S, JIANG Y X, et al. Synergetic enhancement of mechanical and fire-resistance performance of waterborne polyurethane by introducing two kinds of phosphorus-nitrogen flame retardant[J]. Journal of Colloid and Interface Science, 2019, 537:197-205.
doi: 10.1016/j.jcis.2018.11.003
[16] HAO S, WANG S, SHUANG Y, et al. Flame-retardant performance and mechanism of epoxy thermosets modified with a novel reactive flame retardant containing phosphorus, nitrogen, and sulfur[J]. Polymers for Advanced Technologies, 2018, 29(1):1-10.
[17] EL-HADY M, SHARAF S, FAROUK A. Highly hydrophobic and UV protective properties of cotton fabric using layer by layer self-assembly technique[J]. Cellulose, 2020, 27:1099-1100.
doi: 10.1007/s10570-019-02815-0
[18] 宋远超, 陈国文, 姚慧玲, 等. 硅系阻燃剂作用机理及应用进展[J]. 有机硅材料, 2018, 32(6):496-500.
SONG Yuanchao, CHEN Guowen, YAO Huiling, et al. Progress in mechanism and application of silicon containing flame retardants[J]. Silicone Material, 2018, 32(6):496-500.
[19] 汪帆, 魏兰华. 硼阻燃剂的硏究及应用进展[J]. 广州化工, 2012, 40(18):28-30.
WANG Fan, WEI Lanhua. The progress of research and application of boron-containing flame retardants[J]. Guangzhou Chemical industry, 2012, 40(18):28-30.
[20] 刘伟时, 张铁, 陈珊珊, 等. 硼-氮阻燃剂与氢氧化镁协同阻燃环氧树脂[J]. 高分子材料科学与工程, 2017(5):36-41.
LIU Weishi, ZHANG Tie, CHEN Shanshan, et al. Synergistic flame retardant effect of B-N flame retardant with magnesium hydroxide for epoxy resin[J]. Polymer Materials Science & Engineering, 2017(5):36-41.
[21] LI S S, LIN X H, LI Z G, et al. Hybrid organic-inorganichydrophobic and intumescent flame-retardant coating for cotton fabrics[J]. Composites Communications, 2019, 14:15-20.
doi: 10.1016/j.coco.2019.05.005
[22] SHABANIAN M, HAJIBEYGI M, HEDAYATI K, et al. New ternary PLA/organoclay-hydrogel nanocomposites: design, preparation and study on thermal, combustion and mechanical properties[J]. Materials and Design, 2016, 110:811-820.
doi: 10.1016/j.matdes.2016.08.059
[23] CUI X F, ZHENG W J, ZOU W, et al. Water-retaining, tough and self-healing hydrogels and their uses as fire-resistant materials[J]. Polymer Chemistry, 2019, 10:5151-5158.
doi: 10.1039/C9PY01015G
[24] 贾春雷, 蒋仲安, 唐凯. 温敏性高分子水凝胶制及灭油盘火试验[J]. 消防科学与技术, 2013, 32(4):431-434.
JIA Chunlei, JIANG Zhongan, TANG Kai. Synjournal of a thermosensitive hydrogel and its fire suppressing performance[J]. Fire Protection Science and Technology, 2013, 32(4):431-434.
[25] MYKHALICHKO B, LAVRENYUK H. New water-based fire extinguishant: elaboration, bench-scale tests, and flame extinguishment efficiency determination by cupric chloride aqueous[J]. Fire Safety Journal, 2019, 105:188-195.
doi: 10.1016/j.firesaf.2019.03.005
[26] VYAS P, CHAUDHURI R G, GOPALAKRISHNAN G, et al. Development of novel formulation for high performance fire retardant cementitious mortars[J]. Materials Today: Proceedings, 2020, 28:1245-1253.
doi: 10.1016/j.matpr.2020.03.207
[27] XUE D, HU X M, CHENG W M, et al. Carbon dioxidesealing-based inhibition of coal spontaneous combustion: a temperature-sensitive micro-encapsulated fire-retardant foamed gel[J]. Fuel, 2020, 266:117036.
doi: 10.1016/j.fuel.2020.117036
[28] LI Y S, HU X M, CHENG W M, et al. A novel high-toughness, organic/inorganic double-networkfire-retardant gel for coal-seam with high ground temperature[J]. Fuel, 2020, 263:116779.
doi: 10.1016/j.fuel.2019.116779
[29] JIANG Z W, DOU G L. Preparation and characterization of chitosan grafting hydrogel for mine-fire fighting[J]. ACS Omega, 2020, 5:2303-2309.
doi: 10.1021/acsomega.9b03551
[30] TOREKI W. Degradable or reversible fire-blocking gel: US20070001156[P]. 2007-01-04.
[31] BRIDGEMAN W M. Fire-resistant blanket: US6102128 A[P]. 2000-08-15.
[32] ILLEPERUMA W R K, ROTHEMUND P, SUO Z G, et al. Fire-resistant hydrogel-fabric laminates: a simple concept that may save lives[J]. ACS Applied Materials & Interfaces, 2016, 8(3):2071-2077.
[33] YU Z C, SURYAWANSHI A, HE H L, et al. Preparation and characterisation of fire-resistant PNIPAAm/SA/AgNP thermosensitive networkhydrogels and laminated cotton fabric used in firefighter protective clothing[J]. Cellulose, 2020, 27:5391-5406.
doi: 10.1007/s10570-020-03146-1
[34] LI B, LI D P, YANG Y N, et al. Study of thermal sensitive alginate-Ca2+/poly(N-isopropylacrylamide) hydrogels supported by cotton fabric for wound dressing applications[J]. Textile Research Journal, 2018, 89:801-813.
doi: 10.1177/0040517518755790
[1] WANG Xiaobo, QIAN Xiaoming, WANG Lijing, LIU Yongsheng, BAI He. Review on liquid cooling garment and its feasibility study in fire fighting [J]. Journal of Textile Research, 2021, 42(06): 198-207.
[2] HU Beibei, DU Feifei, LI Xiaohui. Hole structure optimization and evaluation of thermal barrier for firefighter protective clothing [J]. Journal of Textile Research, 2019, 40(11): 140-144.
[3] . Comprehensive evaluation of thermal protection and comfort of outer fabrics of firefighter protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 100-104.
[4] . Analysis of evaluation method of thermal protective performance of firefighter protective clothing exposure to low level radiation [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 162-168.
[5] . Influence of waterproof permeable layer on thermal and moisture protective performance of firefighter protective clothing in fire disaster [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(02): 152-158.
[6] . Research progress of heat transfer mechanism of air gap under firefighter protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(01): 167-172.
[7] . Evaluation of thermal protective performance of fabric for firefighter protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(08): 110-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!