Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (06): 120-127.doi: 10.13475/j.fzxb.20200805608

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Cotton knitted fabrics treated with two-dimensional transitional metal carbide Ti3C2Tx and property analysis

LI Yifei, ZHENG Min(), CHANGZHU Ningzi, LI Liyan, CAO Yuanming, ZHAI Wangyi   

  1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215006, China
  • Received:2020-08-12 Revised:2021-03-18 Online:2021-06-15 Published:2021-06-28
  • Contact: ZHENG Min E-mail:zhengmin@suda.edu.cn

Abstract:

To study the application of textiles, a two-dimensional nanomaterial Ti3C2Tx was prepared using Ti3AlC2 as the precursor based on the selective etching of LiF/HCl. Transmission electron microscope, scanning electron microscope, X-ray energy spectrum diffraction, ultraviolet-visible absorption spectrum were used to characterize the surface morphology, structure, chemical composition of Ti3C2Tx, which was used to treat cotton knitted fabrics using the pad-dry-cure technique with optimised finishing technic parameters. The results show that under the condition that the concentration of Ti3C2Tx was 8 g/L, the liquid ratio was 100%, the dipping time was 40 min, the baking temperature was 150 ℃, baking time was 3 min and repeated 4 times, the fabric had the best conductivity with 1.25% Ti3C2Tx loading. Ti3C2Tx is uniformly distributed on the surface of the fabric, and the surface resistance is significantly reduced to 600 Ω/□. The fabric after several finishing has excellent UV resistance, and the ultraviolet protection value reaches 500. The finished fabric presents good breathability, and the surface resistance of the finished fabric is lower than 5 kΩ/□ after 5 times of finishing under 20 times of washing.

Key words: Ti3C2Tx(MXene), conductive fabric, UV resistance, electric conductivity, functional finishing, cotton knitted fabric, smart clothing

CLC Number: 

  • TS195.2

Fig.1

XRD pattern of Ti3C2Tx with different time in etching "

Fig.2

SEM images of Ti3C2Tx at different phase of etching and Ti3C2Tx treated fabric.(a) Ti3C2Tx before etching; (b) Ti3C2Tx etching for 6 h; (c) Ti3C2Tx etching for 24 h; (d) Ti3C2Tx treated fabric "

Fig.3

TEM images of Ti3C2Tx flakes.(a) Multi-layered Ti3C2Tx; (b) Single layered Ti3C2Tx "

Fig.4

EDX-SEM analysis of Ti3C2Tx treated fabric.(a) EDS spectrum; (b) EDS-SEM image; (c) Mapping images of Ti; (d) Mapping images of C; (e) Mapping images of F "

Fig.5

Influence of Ti3C2Tx concentration on surface resistance of fabric "

Fig.6

Influence of pick-up on surface resistance of fabric"

Fig.7

Influence of dipping time on surface resistance of fabric"

Fig.8

Influence of baking temperature on surface resistance of fabric"

Fig.9

Influence of baking time on surface resistance of fabric"

Fig.10

Influence of finishing times on Ti3C2Tx loading(a) and surface resistance of fabric(b) "

Tab.1

UV resistance of fabric finished by Ti3C2Tx "

整理次数 UPF值 透过率/%
UVA UVB
0(原织物) 32.97 2.08 2.87
1 354.20 0.31 0.29
2 500.00 0.16 0.16
3 500.00 0.09 0.08
4 500.00 0.09 0.08
5 500.00 0.08 0.08

图12

UV transmittance of Ti3C2Tx with different finishing times "

Fig.12

UV-vis spectrum of Ti3C2Tx "

Tab.2

Breathability of fabric finished by Ti3C2Tx "

整理次数 透气率/(mm·s-1)
0(原织物)
1
2
3
4
5
302.12
231.02
210.64
202.46
200.18
189.20

Tab.3

Washing fastness of fabric finished by Ti3C2Tx "

整理次数 表面电阻/(kΩ·□-1)
未水洗 水洗5次 水洗10次 水洗20次
1 2.46 8.84 15.69 37.45
3 0.95 1.82 3.77 8.68
5 0.59 1.10 2.16 4.62

Tab.4

Rubbing fastness test of fabric finished by Ti3C2Tx "

整理次数 耐摩擦色牢度/级
干摩 湿摩
1 4 3
3 3~4 2~3
5 3 2
[1] MICHAEL N, MURAT K, VOLKER P, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Advanced Materials, 2011, 23(37):4248-4253.
doi: 10.1002/adma.201102306
[2] MICHAEL G, MARIA R L, ZHAO M Q, et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance[J]. Nature, 2014, 516(7529):78-81.
doi: 10.1038/nature13970
[3] GAO Y, WANG L, LI Z, et al. Preparation of MXene-Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate [J]. Solid State Sciences, 2014, 35:62-65.
doi: 10.1016/j.solidstatesciences.2014.06.014
[4] LIU Y X, RUI L, YANG L, et al. Sandwich-like Co3O4/MXene composite with enhanced catalytic performance for Bisphenol A degradation [J]. Chemical Engineering Journal, 2018, 347(1):731-740.
doi: 10.1016/j.cej.2018.04.155
[5] NAVID A, SAIDUR R, ARIFUTZZAMAN A, et al. Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as a new class of nanocomposites[J]. Journal of Energy Storage, 2020, 27:101115.
doi: 10.1016/j.est.2019.101115
[6] LI M X, WANG H Y, WANG X X, et al. Ti3C2/Cu2O heterostructure based signal-off photoelectrochemical sensor for high sensitivity detection of glucose [J]. Biosensors and Bioelectronics, 2019, 142:111535.1-111535.6.
[7] LENKA L, BERTOK T, JAROSLAV F, et al. Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications [J]. Sensors & Actuators B Chemical, 2018, 263(15):360-368.
[8] LIANG G, ZHU P, WEI Y Y, et al. A facile approach for coating Ti3C2Tx on cotton fabric for electromagnetic wave shielding [J]. Cellulose, 2019, 26(4):2833-2847.
doi: 10.1007/s10570-019-02284-5
[9] CAO W T, CHENG F F, ZHU Y J, et al. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties[J]. ACS Nano, 2018, 12(5):4583-4593.
doi: 10.1021/acsnano.8b00997
[10] 康瑞洋, 张振宇, 郭梁超, 等. Ti3C2 MXene填充环氧树脂复合材料摩擦学性能研究 [J]. 硬质合金, 2019, 36(33):213-220.
KANG Ruiyang, ZHANG Zhenyu, GUO Liangchao, et al. study on the tribological property of epoxy composites filled with Ti3C2 MXene [J]. Cemented Carbide, 2019, 36(33):213-220.
[11] 马飞祥, 丁晨, 凌忠文, 等. 导电织物制备方法及应用研究进展[J]. 材料导报, 2020, 34(1):1114-1125.
MA Feixiang, DING Chen, LING Zhongwen, et al. Research progress on preparation and application of conductive fabrics[J]. Materials Reports, 2020, 34(1):1114-1125.
[12] 吉益民. 石墨烯功能性整理蚕丝织物及其结构和性能研究[D]. 苏州: 苏州大学, 2018:40-41.
JI Yimin. Study on the preparation, structure and properties of graphene functional finished silk fabrics[D]. Suzhou: Soochow University, 2018:40-41.
[13] 范静静, 王鸿博, 傅佳佳, 等. 层层自组装的碳纳米管复合导电棉织物制备[J]. 纺织学报, 2019, 40(4):90-95.
FAN Jingjing, WANG Hongbo, FU Jiajia, et al. Preparation of composite conductive cotton fabric based on carbon nanotubes by layer-by-layer self-assembly[J]. Journal of Textile Research, 2019, 40(4):90-95.
[14] 王赫, 王洪杰, 王闻宇, 等. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 材料导报, 2018, 32(5):730-734.
WANG He, WANG Hongjie, WANG Wenyu, et al. Research progress in polyacrylonitrile (PAN) pasted carbon nanofibers electrode materials for supercapa-citor[J]. Material Reports, 2018, 32(5):730-734.
[15] MOHAMMAD R N, MOHAMMAD S K. Silver nanowire-functionalized cotton fabric[J]. Carbohydrate Polymers, 2015, 117(1):160-168.
doi: 10.1016/j.carbpol.2014.09.057
[16] 吴依琳, 李永贵, 麻文效. 金属纤维混纺电磁屏蔽织物的研究进展[J]. 纺织科技进展, 2020(6):1-4.
WU Yilin, LI Yonggui, MA Wenxiao. Research progress of metal fiber blended electromagnetic shielding fabric[J]. Progress in Textile Science & Technology, 2020(6):1-4.
[17] 周兆懿, 赵亚萍, 蔡再生. 原位聚合法制备涤纶/聚苯胺复合导电织物[J]. 印染, 2009, 35(5):1-5.
ZHOU Zhaoyi, ZHAO Yaping, CAI Zaisheng, et al. Preparation of polyaniline/polyester conducting composite fabric with in-situ polymerization[J]. China Dyeing & Finishing, 2009, 35(5):1-5.
[18] 王博, 凡力华, 原韵, 等. 可拉伸聚吡咯/棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10):107-112.
WANG Bo, FAN Lihua, YUAN Yun, et al. Preparation and electric storage performance of stretchable polypyrrole/cotton knitted fabric[J]. Journal of Textile Research, 2020, 41(10):107-112.
[19] 李世慧, 董霞, 何瑾馨. 聚噻吩与涤纶导电织物的制备及性能研究[J]. 天津纺织科技, 2017 (1):29-33.
LI Shihui, DONG Xia, HE Jinxin, et al. Study on preparation and performance of polythiophene and polyester conductive fabric[J]. Tianjin Textile Science & Technology, 2017(1):29-33.
[20] CHAO P, XU W K, WEI P, et al. Manipulating photocatalytic pathway and activity of ternary Cu2O/(001)TiO2@Ti3C2Tx catalysts for H2 evolution: Effect of surface coverage [J]. International Journal of Hydrogen Energy, 2019, 44(57):29975-29985.
doi: 10.1016/j.ijhydene.2019.09.190
[1] ZHANG Jiaojiao, LI Yuyang, LIU Yun, DONG Chaohong, ZHU Ping. Flame retardant and antibacterial treatments for cotton-viscose blended fabrics [J]. Journal of Textile Research, 2021, 42(07): 31-38.
[2] WANG Xiaofei, WAN Ailan, SHEN Xinyan. Preparation and strain sensing of dopamine-modified polypyrrole conductive fabric [J]. Journal of Textile Research, 2021, 42(06): 114-119.
[3] ZHAO Yongfang, QIAN Jianhua, SUN Liying, PENG Huimin, MEI Min. Preparation and properties of cotton fabric modified by silver nanowires [J]. Journal of Textile Research, 2021, 42(05): 115-121.
[4] DING Zihan, QIU Hua. Preparation and performance of nano-silica modified water-based polyurethane waterproof and moisture-permeable coated fabrics [J]. Journal of Textile Research, 2021, 42(03): 130-135.
[5] LIU Libin, LÜ Wangyang, CHEN Wenxing. Catalytic degradation of lignin and lignin model compound by copper complexes in bleaching cotton knitted fabrics [J]. Journal of Textile Research, 2021, 42(03): 1-8.
[6] ZHANG Tengjialu, WU Wei, ZHONG Yi, MAO Zhiping, XU Hong. Effect of open width pretreatment on dyeing property of cotton knitted fabrics [J]. Journal of Textile Research, 2021, 42(03): 9-13.
[7] WANG Yuting, LING Zhongwen, YANG Xin, LIU Yuqing. Preparation of nano-tungsten oxide composite cotton fiber and its photochromic properties [J]. Journal of Textile Research, 2021, 42(02): 21-26.
[8] WANG Bo, FAN Lihua, YUAN Yun, YIN Yunjie, WANG Chaoxia. Preparation and electric storage performance of stretchable polypyrrole/cotton knitted fabric [J]. Journal of Textile Research, 2020, 41(10): 101-106.
[9] WANG Yating, ZHAO Jiaqi, WANG Bijia, FENG Xueling, QIAN Guochun, SUI Xiaofeng. Research progress in dyeing and functional finishing of artificial microfiber leather [J]. Journal of Textile Research, 2020, 41(07): 188-196.
[10] CHENG Shijie, WANG Chenyang, ZHANG Hongwei, ZUO Danying. Effect of boron nitrogen doped carbon dots on ultraviolet-protection of cotton fabrics [J]. Journal of Textile Research, 2020, 41(06): 93-98.
[11] LIN Jiameng, WAN Ailan, MIAO Xuhong. Preparation and properties of polypyrrole/silver conductive polyester fabrics [J]. Journal of Textile Research, 2020, 41(03): 113-117.
[12] CHANG Shuo, SHEN Jiajia. Research progress of graphene durable finishing of textiles [J]. Journal of Textile Research, 2020, 41(02): 179-186.
[13] YI Ling, ZHANG He, FU Xin, LI Wen. Preparation and far-infrared emission performance of graphene based zirconium/titanium composites modified cotton fabrics [J]. Journal of Textile Research, 2020, 41(01): 102-109.
[14] HE Qingqing, XU Hong, MAO Zhiping, ZHANG Linping, ZHONG Yi, LÜ Jingchun. Preparation of high-electrical conductivity polypyrrole-coated fabrics [J]. Journal of Textile Research, 2019, 40(10): 113-119.
[15] LIN Jiameng, MIAO Xuhong, WAN Ailan. Influence of plasma pretreatment on structure and properties of polypyrrole/polyester warp knitted conductive fabric [J]. Journal of Textile Research, 2019, 40(09): 97-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!