Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (08): 185-193.doi: 10.13475/j.fzxb.20200807309

• Comprehensive Review • Previous Articles     Next Articles

Research progress of textile composite helmet shell against low-velocity impact

TAN Jiangtao, JIANG Gaoming(), GAO Zhe, ZHENG Peixiao   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2020-08-18 Revised:2021-03-31 Online:2021-08-15 Published:2021-08-24
  • Contact: JIANG Gaoming E-mail:jgm@jiangnan.edu.cn

Abstract:

In order to deeply understand and improve the performance of textile composite helmet shell against low-velocity impact, the structural characteristics of two- and three-dimensional preform of the textile composite helmet shell and the advantages and disadvantages of each fabric structure in the application of helmet shell were compared and analyzed. The molding process and product characteristics of three types of helmet shells including molding method, inflatable bladder molding method, and vacuum bag method were introduced. The latest global research progress on the impact resistance of textile composite helmet shell was summarized from three aspects, namely, impact performance index, experimental research, and numerical simulation. Based on previous studies, the paper highlighted the necessity of further research on textile composite helmet shell against low-velocity impact because of the important research significance, such as the development of integrated forming of helmet shell preform, the exploration of the molding process on the performance of the helmet shell, and the research on the damage mechanism of the helmet shell.

Key words: textile composite, helmet shell, preform, low-velocity impact resistance, integrated forming of helmet

CLC Number: 

  • TB332

Fig.1

Schematic diagram of helmet shell made of flat-knitted spacer fabric reinforced composite"

Fig.2

Helmet shell made by airbag pressurization method"

Fig.3

Schematic diagram of helmet impact test bench"

[1] CRIPTON P A, DRESSLER D M, STUART C A, et al. Bicycle helmets are highly effective at preventing head injury during head impact: head-form accelerations and injury criteria for helmeted and unhelmeted impacts[J]. Accident Analysis & Prevention, 2014, 70:1-7.
doi: 10.1016/j.aap.2014.02.016
[2] LIU B C, IVERS R, NORTON R, et al. Helmets for preventing injury in motorcycle riders[J]. Cochrane Database of Systematic Reviews, 2008, 1(2):1-44.
[3] FERNANDES F A O, SOUSA R J A. Motorcycle helmets: a state of the art review[J]. Accident Analy-sis & Prevention, 2013, 56:1-21.
[4] SHUAEIB F M, HAMOUDA A, HAMDAN M, et al. Motorcycle helmet: part Ⅲ: manufacturing issues[J]. Journal of Materials Processing Technology, 2002, 123(3):432-439.
doi: 10.1016/S0924-0136(02)00046-8
[5] PINNOJI P K, MAHAJAN P. Analysis of impact-induced damage and delamination in the composite shell of a helmet[J]. Materials & Design, 2010, 31(8):3716-3723.
doi: 10.1016/j.matdes.2010.03.011
[6] 韩朝锋, 孙颖, 徐艺榕, 等. 头盔壳体用复合材料增强织物研究进展[J]. 纺织学报, 2014, 35(8):116-123.
HAN Chaofeng, SUN Ying, XU Yirong, et al. Research progress of reinforced fabrics used for composite helmet shells[J]. Journal of Textile Research, 2014, 35(8):116-123.
[7] KANG T J, KIM C. Energy-absorption mechanisms in Kevlar multiaxial warp-knit fabric composites under impact loading[J]. Composites Science and Technology, 2000, 60(5):773-784.
doi: 10.1016/S0266-3538(99)00185-2
[8] CAMPBELL D T, CRAMER D R. Hybrid thermoplastic composite ballistic helmet fabrication study[J]. Advancement of Materials & Process Engineering, 2008, 32(3):135-146.
[9] AKTAS A, TERCAN M, AKTAS M, et al. Investigation of knitting architecture on the impact behavior of glass/epoxy composites[J]. Composites Part B: Engineering, 2013, 46:81-90.
doi: 10.1016/j.compositesb.2012.10.011
[10] YAN Ruosi, QIN Zhigang, SHI Bao, et al. Investigation on low-velocity impact and interfacial bonding properties of weft-knitted UHMWPE reinforced composites[J]. Journal of Industrial Textiles, 2020. DOI: 10.1177/1528083720931474.
doi: 10.1177/1528083720931474
[11] 罗岳文. UHMWPE纬编针织复合材料的力学性能研究[D]. 天津:天津工业大学, 2016: 35-40.
LUO Yuewen. Study on mechanical properties of UHMWPE weft knitted composites[D]. Tianjin: Tiangong University, 2016: 35-40.
[12] ZHANG Diantang, SUN Ying, CHEN Li, et al. A comparative study on low-velocity impact response of fabric composite laminates[J]. Materials & Design, 2013, 50:750-756.
doi: 10.1016/j.matdes.2013.03.044
[13] ZAHID B, CHEN X. Manufacturing of single-piece textile reinforced riot helmet shell from vacuum bag-ging[J]. Journal of Composite Materials, 2013, 47(19):2343-2351.
doi: 10.1177/0021998312457703
[14] 谢婉晨. 三维机织物复合材料头盔壳体的制备及成型[D]. 武汉:武汉纺织大学, 2017:36-41.
XIE Wanchen. Study on the preparation and forming of the helmet shell with composite materials of 3D woven fabric[D]. Wuhan: Wuhan Textile University, 2017: 36-41.
[15] VANCLOOSTER K, LOMOV S V, VERPOEST I. Experimental validation of forming simulations of fabric reinforced polymers using an unsymmetrical mould configuration[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(4):530-539.
doi: 10.1016/j.compositesa.2009.02.005
[16] ALLAOUI S, BOISSE P, CHATEL S, et al. Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(6):612-622.
doi: 10.1016/j.compositesa.2011.02.001
[17] NAWAB Y, LEGRAND X, KONCAR V. Study of changes in 3D-woven multilayer interlock fabric preforms while forming[J]. Journal of The Textile Institute, 2012, 103(12):1-7.
doi: 10.1080/00405000.2011.622987
[18] 徐艳华, 袁新林. 机织针织复合织物与多层双轴向纬编织物拉伸性能对比[J]. 纺织学报, 2012, 33(6):30-34.
XU Yanhua, YUAN Xinlin. Comparison of tensile properties of co-woven-knitted fabric and multi-layered biaxial weft knitted fabric[J]. Journal of Textile Research, 2012, 33(6):30-34.
[19] 王孟华. 纬编双轴向织物增强先进消防头盔壳体材料的研究[D]. 天津:天津工业大学, 2020: 50-56.
WANG Menghua. Research on advanced fire helmet shell reinforced by weft knitted biaxial fabric[D]. Tianjin: Tiangong University, 2020: 50-56.
[20] 姜亚明, 邱冠雄, 刘良森. 纬编双轴向多层衬纱织物增强高性能头盔[J]. 针织工业, 2005(12):4-8.
JIANG Yaming, QIU Guanxiong, LIU Liangsen. Multi-layered biaxial weft knitted fabric reinforced high performance helmet[J]. Knitting Industries, 2005(12):4-8.
[21] XIANG He, JIANG Yaming, QI Yexiong, et al. Process-induced distortions characterization of MBWK fabric reinforced composite helmet shell[J]. Materials, 2020, 13(13):2983.
doi: 10.3390/ma13132983
[22] 赵彤. 基于纬编间隔织物的头盔缓冲衬垫材料制备与性能研究[D]. 上海:东华大学, 2017: 46-60.
ZHAO Tong. Study on cushioning properties of weft-knitted spacer fabrics for helmet padding[D]. Shanghai: Donghua University, 2017: 46-60.
[23] 徐英凯, 朱姝, 袁象恺, 等. 纺织结构碳纤维增强尼龙6(CFF/PA6)复合材料的模压成型工艺[J]. 塑料工业, 2015, 43(7):48-51,68.
XU Yingkai, ZHU Shu, YUAN Xiangkai, et al. Compression molding processing of carbon fiber fabric reinforced nylon 6 (CFF/PA6) composites[J]. China Plastics Industry, 2015, 43(7):48-51,68.
[24] 李哲夫, 谈源, 张俭, 等. 热模压预成型工艺参数对复合材料帽型长桁质量的影响[J]. 复合材料学报, 2020. DOI: 10.13801/j.cnki.fhclxb.20201215.004.
doi: 10.13801/j.cnki.fhclxb.20201215.004
LI Zhefu, TAN Yuan, ZHANG Jian, et al. Effects of hot stamp forming process parameters on quality of the hat-shaped structure preforms of composites[J]. Acta Materiae Compositae Sinica, 2020. DOI: 10.13801/j.cnki.fhclxb.20201215.004.
doi: 10.13801/j.cnki.fhclxb.20201215.004
[25] 王英男, 潘利剑, 刘国峰. 复合材料湿法模压成型工艺参数研究[J]. 航空制造技术, 2018, 61(14):56-60.
WANG Yingnan, PAN Lijian, LIU Guofeng. Parameters of composites wet compression molding[J]. Aeronautical Manufacturing Technology, 2018, 61(14):56-60.
[26] MARISSEN R, DUURKOOP D, HOEFNAGELS H, et al. Creep forming of high strength polyethylene fiber prepregs for the production of ballistic protection hel-mets[J]. Composites Science and Technology, 2010, 70(7):1184-1188.
doi: 10.1016/j.compscitech.2010.03.003
[27] 王英男, 潘利剑, 刘国峰, 等. 工艺间隙对气囊法成型复合材料圆管性能影响[J]. 玻璃钢/复合材料, 2016(8):87-91.
WANG Yingnan, PAN Lijian, LIU Guofeng, et al. The performance influence of the process gap on the composite circular tubes by the inflatable bladder molding[J]. Fiber Reinforced Plastics/Composites, 2016(8):87-91.
[28] 洪旭辉, 张扬. Kevlar军用头盔盔壳的研制[C]//第十三届全国复合材料学术会议. 北京: 航空工业出版社, 2004: 841-846.
HONG Xuhui, ZHANG Yang. The preparation of the military Kevlar helmet shell[C]//13th National Conference on Composite Materials. Beijing: Aviation Industry Press, 2004: 841-846.
[29] 贾立军. 复合材料加工工艺[M]. 天津: 天津大学出版社, 2007: 57-63.
JIA Lijun. Composite processing technology[M]. Tianjin: Tianjin University Press, 2007: 57-63.
[30] ZAHID B. Riot helmet shells with continuous reinforcement for improved protection[D]. Manchester: Manchester University, 2012: 79-95.
[31] 谢婉晨, 干林丽, 周熠, 等. 芳纶角联锁织物复合材料头盔壳体的成型工艺[J]. 武汉纺织大学学报, 2017(3):17-20.
XIE Wanchen, GAN Linli, ZHOU Yi, et al. Molding process of aramid angle interlock fabric composite helmet shell[J]. Journal of Wuhan Textile University, 2017(3):17-20.
[32] 吴利伟, 王伟, 林佳弘, 等. 芳纶/超高分子量聚乙烯织物增强聚氨酯夹芯复合材料制备及其力学性能[J]. 纺织学报, 2019, 40(7):64-70.
WU Liwei, WANG Wei, LIN Jiahong, et al. Preparation and mechanical properties of aramid/ultra-high molecular weight polyethylene fabric reinforced polyurethane sandwich composite[J]. Journal of Textile Research, 2019, 40(7):64-70.
[33] 廖斌斌, 周建武, 林渊, 等. CFRP层合板低速冲击响应及损伤特性研究[J]. 高压物理学报, 2019, 33(4):105-113.
LIAO Binbin, ZHOU Jianwu, LIN Yuan, et al. Low-velocity impact behavior and damage characteristics of CFRP laminates[J]. Chinese Journal of High Pressure Physics, 2019, 33(4):105-113.
[34] 管清宇, 严文军, 吴光辉, 等. 碳纤维/环氧树脂复合材料层压板冲击凹坑的回弹特性[J]. 复合材料学报, 2020, 37(2):284-292.
GUAN Qingyu, YAN Wenjun, WU Guanghui, et al. Impact dent relaxation characteristic of carbon fiber/epoxy resin composite laminate[J]. Acta Materiae Compositae Sinica, 2020, 37(2):284-292.
[35] ARTERO J A, PERNAS J, PUENTE J, et al. Experimental study of the impactor mass effect on the low velocity impact of carbon/epoxy woven lami-nates[J]. Composite Structures, 2015, 133:774-781.
doi: 10.1016/j.compstruct.2015.08.027
[36] ZAHID B, CHEN X. Impact performance of single-piece continuously textile reinforced riot helmet shells[J]. Journal of Composite Materials, 2014, 48(6):761-766.
doi: 10.1177/0021998313477173
[37] BERND F, EVERSON K, ANTON S, et al. Rethinking the safety of jockey helmets: a statistical comparison of different composite laminate helmet shells[J]. Procedia Engineering, 2016, 147:508-512.
[38] ZAHID B, CHEN X. Impact evaluation of Kevlar-based angle-interlock woven textile composite structures[J]. Journal of Reinforced Plastics & Composites, 2013, 32(12):925-932.
[39] TINARD V, DECK C, BOURDET N, et al. Motorcyclist helmet composite outer shell characterization and modelling[J]. Materials and Design, 2011, 32(5):3112-3119.
doi: 10.1016/j.matdes.2010.12.019
[40] ZHUANG W, AO W. Effect of stacking angles on mechanical properties and damage propagation of plain woven carbon fiber laminates[J]. Materials Research Express, 2018, 5(3):575-603.
[41] 王心淼, 陈利, 焦伟, 等. 多轴向三维机织复合材料的低速冲击力学性能[J]. 材料导报, 2020, 34(14):14191-14197.
WANG Xinmiao, CHEN Li, JIAO Wei, et al. Low-velocity impact properties of multiaxial 3D woven composites[J]. Materials Reports, 2020, 34(14):14191-14197.
[42] LIAO B, WANG P, ZHENG J, et al. Effect of double impact positions on the low velocity impact behaviors and damage interference mechanism for composite lami-nates[J]. Composites Part A: Applied Science and Manufacturing, 2020, 136:105964.
doi: 10.1016/j.compositesa.2020.105964
[43] 高哲. 多轴向经编曲面复合材料低速冲击性能研究[D]. 无锡:江南大学, 2017: 35-44.
GAO Zhe. Research on low-velocity impact mechanism of curved multi-axial warp-knitted composites[D]. Wuxi: Jiangnan University, 2017: 35-44.
[44] BRANDS D W A. Development and validation of a finite element model of a motorcycle helmet[D]. Eindhoven: Eindhoven University of Technology, 1996: 128-156.
[45] KOSTOPOULOS V, MARKOPOULOS Y P, GIANNOPOULOS G, et al. Finite element analysis of impact damage response of composite motorcycle safety helmets[J]. Composites Part B: Engineering, 2002, 33(2):99-107.
doi: 10.1016/S1359-8368(01)00066-X
[46] ROEDEL C, CHEN X. Innovation and analysis of police riot helmets with continuous textile reinforcement for improved protection[C]//Conference on Computational Engineering in Systems Applications. Beijing: Tsinghua University Press, 2006, 1(2):187-194.
[47] TINARD V, DECK C, WILLINGER R. Modelling and validation of motorcyclist helmet with composite shell[J]. International Journal of Crashworthiness, 2012, 17(2):209-215.
doi: 10.1080/13588265.2011.648465
[48] ZAHID B, CHEN X. Energy absorption at different impact locations of riot helmet shells[J]. International Journal of Textile Science, 2013, 2(4):126-131.
[49] 赵兰迎, 李伟华, 刘文江, 等. 冲击载荷下地震救援头盔变形和吸能效果研究[J]. 灾害学, 2019, 34(3):71-75, 108.
ZHAO Lanying, LI Weihua, LIU Wenjiang, et al. Study of deformation and energy absorption of earthquake helmet under impact loads[J]. Journal of Catastrophology, 2019, 34(3):71-75, 108.
[1] REN Libing, CHEN Li, JIAO Wei. Microstructure characterization of multi-layer interlocked woven preforms based on quadratic functions [J]. Journal of Textile Research, 2021, 42(08): 76-83.
[2] YANG Xin, SHAO Huiqi, JIANG Jinhua, CHEN Nanliang. Meso-structure simulation of hexagonal braiding preforms [J]. Journal of Textile Research, 2021, 42(04): 85-92.
[3] CHEN Xiaoming, LI Jiao, ZHANG Yifan, XIE Junbo, LI Chenyang, CHEN Li. Design of flexible needle-punching forming system for rotary structure preform [J]. Journal of Textile Research, 2020, 41(11): 156-161.
[4] DONG Weiguo. Preparation and properties of glass fiber/polypropylene fiber reinforced thermoplastic composites [J]. Journal of Textile Research, 2019, 40(03): 71-75.
[5] WANG Xinmiao, CHEN Li, ZHANG Diantang, CHEN Dong. Micro-structure and properties of multilayer multiaxial woven composites [J]. Journal of Textile Research, 2019, 40(02): 45-52.
[6] . Study on textile composite instead of table tennis sponge [J]. Journal of Textile Research, 2015, 36(02): 61-65.
[7] . Research progress of reinforced fabrics used for composite helmet shells [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(8): 116-0.
[8] YANG Caiyun. Design method related to 2.5-D preform structural parameters [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(06): 54-57.
[9] SHAO Jiang;WEN Weidong;CUI Haitao. Computer simulation of three-dimensional preforms using track and column braiding [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(9): 129-132.
[10] ZHANG Shujie;WANG Rui;XU Lei;WANG Huan. Finite element analysis of mechanical properties of the tubular textile composites [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(5): 51-54.
[11] GUO Yunfei;LI Jialu . Ultrasonic on-line testing of the thickness of 3-D braided preforms [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(5): 55-58.
[12] LI Hongxia;LIU Li;HUANG Gu. Flax/polypropylene weft knitted composites preform and the mechanical properties [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(10): 52-55.
[13] JIANG Haizhen;LI Liangyu;FAN Fanglei;ZHOU Xin. Vision tracking system of 3-D preform stitching robot [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(10): 113-116.
[14] XU Guoping;HAN Jian. Flow rate analysis during textile composites manufacturing [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(9): 61-64.
[15] WANG Rui;ZHANG Shujie;GAO Yanzhang;WANG Huan. Mechanical properties of tubular textile composite material for pipeline rehabilitation [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(6): 70-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!