Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (10): 190-198.doi: 10.13475/j.fzxb.20200808109

• Comprehensive Review • Previous Articles    

Research progress in heat transfer mechanism of firefighter protective clothing under low-level radiant heat exposures

ZHANG Wenhuan1, LI Jun1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2020-08-20 Revised:2021-01-06 Online:2021-10-15 Published:2021-10-29
  • Contact: LI Jun E-mail:lijun@dhu.edu.cn

Abstract:

In order to effectively achieve the control of the thermal damage to the firefighting workers in low heat radiative environment, the complex heat exchange mechanism in the firefighting clothing system, were reviewed to guide product design and development. Based on the heat transfer theory of fire-fighting clothing system, the current research progress was reviewed and discussed from four perspectives, including the basic performance of fire-fighting clothing fabrics and the style of clothing, the morphology and activity of the human body, the characteristics of radiant heat sources, and the coupling effect of heat and moisture. Based on the analysis of the difficulties and bottlenecks in the previous research, the research directions worth exploring for the future were refined, which are the distribution of inhomogeneous air layers and the upgrading of simulation methods, the air flow and velocity field formed by unsteady human motion and environmental wind as well as the relationship between the air flow and heat flow, expanding the connotation of clothing heat transfer mechanism research by coupling human thermo-regulational model.

Key words: low radiant heat exposure, firefighter protective clothing, thermal protective performance, heat transfer mechanism, heat and moisture transfer

CLC Number: 

  • TS941.73
[1] SATI R, CROWN E M, GONZALEZ J, et al. Protection from steam at high pressures: development of a test device and protocol[J]. International Journal of Occupational Safety and Ergonomics, 2008, 14(1):29-41.
doi: 10.1080/10803548.2008.11076748
[2] LU Y, SONG G, ACKERMAN M Y, et al. A new protocol to characterize thermal protective performance of fabrics against hot liquid splash[J]. Experimental Thermal and Fluid Science, 2013, 46:37-45.
doi: 10.1016/j.expthermflusci.2012.11.018
[3] 张梦莹, 苗勇, 李俊. 防火服热蓄积的影响因素及其测评方法[J]. 纺织学报, 2016, 37(6):171-176.
ZHANG Mengying, MIAO Yong, LI Jun. Influence factors and evaluation methods of stored thermal energy in firefighters protective clothing[J]. Journal of Textile Research, 2016, 37(6):171-176.
[4] BARKER R. A review of gaps and limitations in test methods for first responder protective clothing and equipment[R]. North Carolina: National Institute for Occupational Safety and Health, 2005: 1-101.
[5] BARKER H. Effects of moisture on the thermal protective performance of firefighter protective clothing in low-level radiant heat exposures abstract[J]. Textile Research Journal, 2006, 76(1):27-31.
doi: 10.1177/0040517506053947
[6] BARKER R L, DEATON A S, ROSS K A. Heat transmission and thermal energy storage in firefighter turnout suit materials[J]. Fire Technology, 2011, 47(3):549-563.
doi: 10.1007/s10694-010-0151-3
[7] PERKINS R M. Insulative values of single-layer fabrics for thermal protective clothing[J]. Textile Research Journal, 1979, 49(4):202-212.
doi: 10.1177/004051757904900404
[8] SAWCYN C M J, TORVI D A. Improving heat transfer models of air gaps in bench top tests of thermal protective fabrics[J]. Textile Research Journal, 2009, 79(7):632-644.
doi: 10.1177/0040517508093415
[9] WATSON K. From radiant protective performance to RadManTM: the role of clothing materials in protecting against radiant heat exposures in wildland forest fires[D]. North Carolina: North Carolina State University, 2014: 1-98.
[10] FU M, WENG W, YUAN H. Effects of multiple air gaps on the thermal performance of firefighter protective clothing under low-level heat exposure[J]. Textile Research Journal, 2014, 84(9):968-978.
doi: 10.1177/0040517513512403
[11] ŁAPKA P, FURMANSKI P. Modeling and analysis of the influence of the protective garment movement on the skin temperature and burn degree[J]. Fire Safety Journal, 2020, 111:1-16.
[12] MERT E, PSIKUTA A, BUENO M A, et al. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment[J]. International Journal of Biometeorology, 2015, 59(11):1701-1710.
doi: 10.1007/s00484-015-0978-x
[13] SU Y, LI R, SONG G, et al. Modeling steam heat transfer in thermal protective clothing under hot steam exposure[J]. International Journal of Heat and Mass Transfer, 2018, 120:818-829.
doi: 10.1016/j.ijheatmasstransfer.2017.12.074
[14] LI J, LU Y, LI X. Effect of relative humidity coupled with air gap on heat transfer of flame-resistant fabrics exposed to flash fires[J]. Textile Research Journal, 2012, 82(12):1235-1243.
doi: 10.1177/0040517512436830
[15] FU M, WENG W G, YUAN H Y. Quantitative assessment of the relationship between radiant heat exposure and protective performance of multilayer thermal protective clothing during dry and wet condi-tions[J]. Journal of Hazardous Materials, 2014, 276:383-392.
doi: 10.1016/j.jhazmat.2014.05.056
[16] GUAN M, PSIKUTA A, CAMENZIND M, et al. Effect of perspired moisture and material properties on evaporative cooling and thermal protection of the clothed human body exposed to radiant heat[J]. Textile Research Journal, 2019, 89(18):3663-3676.
doi: 10.1177/0040517518817067
[17] FU M, WENG W, HAN X. Effects of moisture transfer and condensation in protective clothing based on thermal manikin experiment in fire environment[J]. Procedia Engineering, 2013, 62:760-768.
doi: 10.1016/j.proeng.2013.08.123
[18] BRÖDE P, KUKLANE K, CANDAS V, et al. Heat gain from thermal radiation through protective clothing with different insulation, reflectivity and vapour permeabi-lity[J]. International Journal of Occupational Safety and Ergonomics, 2010, 16(2):231-244.
doi: 10.1080/10803548.2010.11076842
[19] FU M. Comparison of bench-scale and manikin tests of protective clothing systems during low-level radia-tion[C]// Fire Science and Technology 2015: The Proceedings of 10th Asia-Oceania Symposium on Fire Science and Technology. Tsukuba: AOAFST, 2015: 485-490.
[20] YANG J, SU Y, SONG G, et al. A new approach to predict heat stress and skin burn of firefighter under low-level thermal radiation[J]. International Journal of Thermal Sciences, 2019, 145:1-10.
[21] SUN G, YOO H S, ZHANG X S, et al. Radiant protective and transport properties of fabrics used by wildland firefighters[J]. Textile Research Journal, 2000, 70(7):567-573.
doi: 10.1177/004051750007000702
[22] MANDAL S, SONG G, ACKERMAN M, et al. Characterization of textile fabrics under various thermal exposures[J]. Textile Research Journal, 2013, 83(10):1005-1019.
doi: 10.1177/0040517512461707
[23] GUAN M, ANNAHEIM S, CAMENZIND M, et al. Moisture transfer of the clothing-human body system during continuous sweating under radiant heat[J]. Textile Research Journal, 2019, 89(21/22):4537-4553.
doi: 10.1177/0040517519835767
[24] ROSSI R M, BOLLI W P. Assessment of radiant heat protection of firefighters'jackets with a manikin[M]. PA: ASTM International, 2000: 212-223.
[25] SONG G, PASKALUK S, SATI R, et al. Thermal protective performance of protective clothing used for low radiant heat protection[J]. Textile Research Journal, 2011, 81(3):311-323.
doi: 10.1177/0040517510380108
[26] HE J, LI J, KIM E. Assessment of the heat and moisture transfer in a multilayer protective fabric system under various ambient conditions[J]. Textile Research Journal, 2015, 85(3):227-237.
doi: 10.1177/0040517514545255
[27] SU Y, HE J, LI J. Modeling the transmitted and stored energy in multilayer protective clothing under low-level radiant exposure[J]. Applied Thermal Engineering, 2016, 93:1295-1303.
doi: 10.1016/j.applthermaleng.2015.10.089
[28] HE J, LI J. Analyzing the transmitted and stored energy through multilayer protective fabric systems with various heat exposure time[J]. Textile Research Journal, 2016, 86(3):235-244.
doi: 10.1177/0040517515588272
[29] HE J, LU Y, YANG J. Quantification of the energy storage caused dual performance of thermal protective clothing containing with moisture exposed to hot steam[J]. Energy Science and Engineering, 2019, 7(6):2585-2595.
doi: 10.1002/ese3.v7.6
[30] DORMAN L, HAVENITH G, BROEDE P. Modelling the metabolic effects of protective clothing[C]// 3rd European Confereetive Clothing(ECPC). Poland: Loughborough's In Stitutional Repository Ltd, 2006, 82-85.
[31] MANDAL S, ANNAHEIM S, CAMENZIND M, et al. Characterization and modelling of thermal protective performance of fabrics under different levels of radiant-heat exposures[J]. Journal of Industrial Textiles, 2019, 48(7):1184-1205.
doi: 10.1177/1528083718760801
[32] 万志琴. 织物有效辐射系数的理论探讨与实验研究[J]. 纺织学报, 1999, 20(4):224-232.
WAN Zhiqin. Theoretical and experimental study on effective radiation coefficient of fabric[J]. Journal of Textile Research, 1999, 20(4):224-232.
[33] TORVI D, REZAZADEH M, BESPFLUG C. Effects of convective and radiative heat sources on thermal response of single- and multiple-layer protective fabrics in benchtop tests[C]// SHIELS B, LEHTONEN K. Performance of Protective Clothing and Equipment: 10th Volume, Risk Reduction Through Research and Testing. PA: ASTM International, 2016: 131-158.
[34] HAGER N E, STEERE R C. Radiant heat transfer in fibrous thermal insulation[J]. Journal of Applied Physics, 1967, 38(12):4663-4668.
doi: 10.1063/1.1709200
[35] TONG T W, TIEN C L. Analytical models for thermal radiation in fibrous insulations[J]. Journal of Thermal Envelope and Building Science, 1980, 4(1):27-44.
[36] TORVI D A. A finite element model of skin subjected to a flash fire[D]. Alberta: University of Alberta, 1994, 1-147.
[37] ZHU F, ZHANG W, SONG G. Heat transfer in a cylinder sheathed by flame-resistant fabrics exposed to convective and radiant heat flux[J]. Fire Safety Journal, 2008, 43(6):401-409.
doi: 10.1016/j.firesaf.2007.11.007
[38] FU M, YUAN M Q, WENG W G. Modeling of heat and moisture transfer within firefighter protective clothing with the moisture absorption of thermal radiation[J]. International Journal of Thermal Sciences, 2015, 96:201-210.
doi: 10.1016/j.ijthermalsci.2015.05.008
[39] REISCHL U, STRANSKY A. Comparative assessment of GORETEXTM and NEOPRENETM vapor barriers in a firefighter turn-out coat[J]. Textile Research Journal, 1980, 50(11):643-647.
doi: 10.1177/004051758005001101
[40] REISCHL U, STRANSKY A, TRAVIS R. Advanced prototype firefighter protective clothing: heat dissipation characteristics[J]. Textile Research Journal, 1982, 52(1):66-73.
doi: 10.1177/004051758205200110
[41] LI J, BARKER R L, DEATON A S. Evaluating the effects of material component and design feature on heat transfer in firefighter turnout clothing by a sweating manikin[J]. Textile Research Journal, 2007, 77(2):59-66.
doi: 10.1177/0040517507078029
[42] MCQUERRY M, BARKER R, DENHARTOG E. Functional design and evaluation of structural firefighter turnout suits for improved thermal comfort: thermal manikin and physiological modeling[J]. Clothing and Textiles Research Journal, 2018, 36(3):165-179.
doi: 10.1177/0887302X18757348
[43] MEREDITH M, DEN HARTOG E, BARKER R, et al. A review of garment ventilation strategies for structural firefighter protective clothing[J]. Textile Research Journal, 2016, 86(7):727-742.
doi: 10.1177/0040517515595029
[44] 卢业虎. 高温液体环境下热防护服装热湿传递与皮肤烧伤预测[D]. 上海: 东华大学, 2013: 22-56.
LU Yehu. Study on heat and mass transfer of thermal protective clothing and prediction of skin burn upon hot liquid splashes[D]. Shanghai: Donghua University, 2013:22-56.
[45] 苏云, 王云仪, 李俊. 消防服衣下空气层热传递机制研究进展[J]. 纺织学报, 2016, 37(1):167-172.
SU Yun, WANG Yunyi, LI Jun. Research progress of heat transfer mechanism of air gap under firefighter protective clothing[J]. Journal of Textile Research, 2016, 37(1):167-172.
[46] UDAYRAJ, TALUKDAR P, DAS A, et al. Numerical modeling of heat transfer and fluid motion in air gap between clothing and human body: effect of air gap orientation and body movement[J]. International Journal of Heat and Mass Transfer, 2017, 108:271-291.
doi: 10.1016/j.ijheatmasstransfer.2016.12.016
[47] ZHU F L, ZHANG W Y. Evaluation of thermal performance of flame-resistant fabrics considering thermal wave influence in human skin model[J]. Journal of Fire Sciences, 2006, 24(6):465-486.
doi: 10.1177/0734904106062355
[48] SU Y, LI J, WANG Y. Effect of air gap thickness on thermal protection of firefighter's protective clothing against hot steam and thermal radiation[J]. Fibers and Polymers, 2017, 18(3):582-589.
doi: 10.1007/s12221-017-6714-x
[49] GUAN M, LI J. Garment size effect of thermal protective clothing on global and local evaporative cooling of walking manikin in a hot environment[J]. International Journal of Biometeorology, 2020, 64(3):485-499.
doi: 10.1007/s00484-019-01836-5
[50] MAH T, SONG G. Investigation of the contribution of garment design to thermal protection: part 1: characterizing air gaps using three-dimensional body scanning for women's protective clothing[J]. Textile Research Journal, 2010, 80(13):1317-1329.
doi: 10.1177/0040517509358795
[51] HE H, YU Z C, SONG G. The effect of moisture and air gap on the thermal protective performance of fabric assemblies used by wildland firefighters[J]. Journal of the Textile Institute, 2016, 107(8):1030-1036.
[52] 黄冬梅, 何松. 空气层位置对消防战斗服隔热性能的影响[J]. 纺织学报, 2015, 36(10):113-119.
HUANG Dongmei, HE Song. Influence of air gap position of heat insulation performance of firefighter'protective clothing[J]. Journal of Textile Research, 2015, 36(10):113-119.
[53] HEUS R, DENHARTOG E A. Maximum allowable exposure to different heat radiation levels in three types of heat protective clothing[J]. Industrial Health, 2017, 55(6):529-536.
doi: 10.2486/indhealth.2017-0137
[54] SU Y, HE J, LI J. Numerical simulation of heat transfer in protective clothing with various heat exposure distances[J]. Journal of the Textile Institute, 2017, 108(8):1412-1420.
doi: 10.1080/00405000.2016.1254591
[55] LI J, TIAN M. Personal thermal protection simulation under diverse wind speeds based on life-size manikin exposed to flash fire[J]. Applied Thermal Engineering, 2016, 103:1381-1389.
doi: 10.1016/j.applthermaleng.2016.04.155
[56] EGBE U E. Developing test procedures for measuring stored thermal energy in firefighter protective clothing[D]. North Carolina: North Carolina State University, 2005: 1-65.
[57] DAS B, ARAUJO M De, KOTHARI V K, et al. Modeling and simulation of moisture transmission through fibrous structures: part II: liquid water transmission[J]. Journal of Fiber Bioengineering and Informatics, 2013, 6(4):383-404.
doi: 10.3993/jfbi
[58] DAS B, DE ARAUJO M, KOTHARI V K, et al. Modeling and simulation of moisture transmission through fibrous structures: part I: water vapour transmission[J]. Journal of Fiber Bioengineering and Informatics, 2012, 5(4):359-378.
doi: 10.3993/jfbi
[59] ŁAPKA P, FURMANSKI P, WISNIEWSKI T S. Numerical modelling of transient heat and moisture transport in protective clothing[J]. Journal of Physics: Conference Series, 2016, 676(1):1-15.
[60] ZHANG H, SONG G, REN H, et al. The effects of moisture on the thermal protective performance of firefighter protective clothing under medium intensity radiant exposure[J]. Textile Research Journal, 2018, 88(8):847-862.
doi: 10.1177/0040517517690620
[61] BARKER R L, GUERTH C, BEHNKE W P, et al. Measuring the thermal energy stored in firefighter protective clothing[J]. ASTM Special Technical Publication, 2000: 33-44.
[62] JASON A, STEVEN C D C. Thermal capacity of fire fighter protective clothing[R]. USA: [s.n], 2008, 1-37.
[63] LAWSON J R. Fire fighters's protective clothing and thermal environments of structural fire fighting[M]. PA: ASTM International, 1997: 334-352.
[64] KEISER C, ROSSI R M. Temperature analysis for the prediction of steam formation and transfer in multilayer thermal protective clothing at low level thermal radia-tion[J]. Textile Research Journal, 2008, 78(11):1025-1035.
doi: 10.1177/0040517508090484
[65] ROSSI R, INDELICATO E, BOLLI W. Hot steam transfer through heat protective clothing layers[J]. International Journal of Occupational Safety and Ergonomics, 2004, 10(3):239-245.
doi: 10.1080/10803548.2004.11076611
[66] TORVI D A, DALE J D, FAULKNER B. Influence of air gaps on bench-top test results of flame resistant fabrics[J]. Journal of Fire Protection Engineering, 1999, 10(1):1-12.
[67] LU Y, LI J, LI X, et al. The effect of air gaps in moist protective clothing on protection from heat and flame[J]. Journal of Fire Sciences, 2013, 31(2):99-111.
doi: 10.1177/0734904112457342
[68] YAMAMOTO G, TANAKA M, ASANO S. Radiative heat transfer in water clouds by infrared radiation[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1971, 11(6):697-708.
doi: 10.1016/0022-4073(71)90048-3
[69] FU M. Combined effects of moisture and radiation on thermal performance of protective clothing experiments by a sweating manikin exposed to low level radiation[J]. International Journal of Clothing Science and Technology, 2014, 27(6):818-834.
doi: 10.1108/IJCST-05-2014-0064
[1] Jun Li. Research progress on heat transfer mechanism of firefighter protective clothing in low-level radiant heat exposures [J]. , 2021, 42(10): 0-0.
[2] YU Zhicai, LIU Jinru, HE Hualing, MA Shengnan, JIANG Huiyu. Research and application progress in fire retardant fabric based on polymeric hydrogel [J]. Journal of Textile Research, 2021, 42(09): 180-186.
[3] WANG Xiaobo, QIAN Xiaoming, WANG Lijing, LIU Yongsheng, BAI He. Review on liquid cooling garment and its feasibility study in fire fighting [J]. Journal of Textile Research, 2021, 42(06): 198-207.
[4] WANG Qi, TIAN Miao, SU Yun, LI Jun, YU Mengfan, XU Xiao. Effect of open/closed air layer on thermal protective performance of flame-resistant fabrics [J]. Journal of Textile Research, 2020, 41(12): 54-58.
[5] MENG Jing, GAO Shan, LU Yehu. Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(11): 116-121.
[6] ZHAI Li'na, LI Jun, YANG Yunchu. Development and current state of thermal sensors used for testing thermal protective clothing [J]. Journal of Textile Research, 2020, 41(10): 188-196.
[7] HE Jiazhen, XUE Xiaoyu, WANG Min, LI Jun. Predicting thermal protective performance of clothing based on maximum attenuation factor model [J]. Journal of Textile Research, 2020, 41(06): 112-117.
[8] GAO Shan, LU Yehu, ZHANG Desuo, WU Lei, WANG Laili. Thermal protective performance of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(04): 117-122.
[9] QIU Hao, SU Yun, WANG Yunyi. Influence of steam exposure condition on thermal protective performance of fabrics [J]. Journal of Textile Research, 2020, 41(01): 118-123.
[10] HU Beibei, DU Feifei, LI Xiaohui. Hole structure optimization and evaluation of thermal barrier for firefighter protective clothing [J]. Journal of Textile Research, 2019, 40(11): 140-144.
[11] SU Yun, YANG Jie, LI Rui, SONG Guowen, LI Jun, ZHANG Xianghui. Predictions of physiological reaction and skin burn of firefighter exposing to thermal radiation [J]. Journal of Textile Research, 2019, 40(02): 147-152.
[12] . Comprehensive evaluation of thermal protection and comfort of outer fabrics of firefighter protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 100-104.
[13] . Prediction of skin injury degree based on modified model of heat transfer in three-layered thermal protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(01): 111-118.
[14] . Analysis of evaluation method of thermal protective performance of firefighter protective clothing exposure to low level radiation [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 162-168.
[15] . Research progress on air gap entrapped in firefighters' protective clothing and its measurement methods [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(06): 151-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!