Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (07): 54-61.doi: 10.13475/j.fzxb.20200808308
• Fiber Materials • Previous Articles Next Articles
YANG Zhi1, LIU Chengkun1(), WU Hong2, MAO Xue1
CLC Number:
[1] |
RAZA A, WANG J Q, YANG S, et al. Hierarchical porous carbon nanofibers via electrospinning[J]. Carbon Letters, 2014, 15(1):1-14.
doi: 10.5714/CL.2014.15.1.001 |
[2] |
SCHLEE P, HEROU S, JERVIS R, et al. Free-standing supercapacitors from kraft lignin nanofibers with remarkable volumetric energy density[J]. Chemical Science, 2019, 10(10):2980-2988.
doi: 10.1039/C8SC04936J |
[3] | 许丽洪. 电纺木质素/聚丙烯腈基碳纤维复合纳米材料及其储能特性研究[D]. 福州: 福建师范大学, 2015:11-12. |
XU Lihong. Energy storage performance of composite nanomaterials derived from electrospun LN-/PAN-based carbon fibers[D]. Fuzhou: Fujian Normal University, 2015: 11-12. | |
[4] |
JAYAWICKRAMAGE R, BALKUS K J, FERRARIS J P, et al. Binder free carbon nanofiber electrodes derived from polyacrylonitrile-lignin blends for high performance supercapacitors[J]. Nanotechnology, 2019, 30(35):355402.
doi: 10.1088/1361-6528/ab2274 |
[5] |
KAZZAZ A E, FATEHI P. Fabrication of amphoteric lignin and its hydrophilicity/oleophilicity at oil/water interface[J]. Journal of Colloid and Interface Science, 2020, 561:231-243.
doi: 10.1016/j.jcis.2019.11.111 |
[6] |
ZHU J D, YAN C Y, ZHANG X, et al. A sustainable platform of lignin: from bioresources to materials and their applications in rechargeable batteries and supercapacitors[J]. Progress in Energy and Combustion Science, 2020, 76:100788.
doi: 10.1016/j.pecs.2019.100788 |
[7] |
SCHLEE P, HOSSEINAEI O, BAKER D, et al. From waste to wealth: from kraft lignin to free-standing supercapacitors[J]. Carbon, 2019, 145:470-480.
doi: 10.1016/j.carbon.2019.01.035 |
[8] |
DAI Z, REN P G, AN Y L, et al. Nitrogen-sulphur Co-doped graphenes modified electrospun lignin/polyacrylonitrile-based carbon nanofiber as high performance supercapacitor[J]. Journal of Power Sources, 2019, 437:226937.
doi: 10.1016/j.jpowsour.2019.226937 |
[9] |
TAO L, HUANG Y B, ZHENG Y W, et al. Porous carbon nanofiber derived from a waste biomass as anode material in lithium-ion batteries[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95:217-226.
doi: 10.1016/j.jtice.2018.07.005 |
[10] |
SONG M, TANG X H, XU J, et al. The formation of novel carbon/carbon composite by chemical vapor deposition: an efficient adsorbent for enhanced desulfurization performance[J]. Journal of Analytical and Applied Pyrolysis, 2016, 118:34-41.
doi: 10.1016/j.jaap.2015.12.020 |
[11] | 顾红星, 王浩静, 范立东, 等. 聚丙烯腈预氧丝预氧化程度表征分析[J]. 化工学报, 2015, 66(3):1228-1233. |
GU Hongxing, WANG Haojing, FAN Lidong, et al. Evaluation and analysis of pre-oxidation extent of polyacrylonitrile fiber[J]. CIESC Journal, 2015, 66(3):1228-1233. | |
[12] |
MA A, LI C, DU W, et al. Study on biomass based nanofibers preparation by electrospinning[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(9):7204-7210.
doi: 10.1166/jnn.2014.8976 |
[13] |
WANG X, ZHANG W, CHEN M Z, et al. Electrospun enzymatic hydrolysis lignin-based carbon nanofibers as binder-free supercapacitor electrodes with high performance[J]. Polymers, 2018, 10(12):1306.
doi: 10.3390/polym10121306 |
[14] | 王成国, 朱波. 聚丙烯腈基碳纤维[M]. 北京: 中国科学出版社, 2011: 114-118. |
WANG Chengguo, ZHU Bo. Polyacrylonitrile-based carbon fiber [M]. Beijing: China Science Press, 2011: 114-118. | |
[15] | 贺福. 碳纤维及石墨纤维[M]. 北京: 化学工业出版社, 2017: 161-163. |
HE Fu. Carbon fiber and graphite fiber [M]. Beijing: Chemical Industry Press, 2017: 161-163. | |
[16] |
DING R, WU H, THUNGA M, et al. Processing and characterization of low-cost electrospun carbon fibers from organosolv lignin/polyacrylonitrile blends[J]. Carbon, 2016, 100:126-136.
doi: 10.1016/j.carbon.2015.12.078 |
[17] |
DAI Z, SHI X, LIU H, et al. High-strength lignin-based carbon fibers via a low-energy method[J]. RSC Advances, 2018, 8(3):1218-1224.
doi: 10.1039/C7RA10821D |
[18] |
DALLMEYER I, LIN L T, LI Y, et al. Preparation and characterization of interconnected, kraft lignin-based carbon fibrous materials by electrospinning[J]. Macromolecular Materials and Engineering, 2014, 299(5):540-551.
doi: 10.1002/mame.v299.5 |
[19] | OROUMEI A, FOX B, NAEBE M. Thermal and rheological characteristics of biobased carbon fiber precursor derived from low molecular weight organosolv lignin[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(4):758-769. |
[20] | 蔡则田. 用Raman光谱研究碳纤维结构及其微观力学性能[D]. 上海: 东华大学, 2010: 4-9. |
CAI Zetian. Stduies on the structure and micro-mechanical properties of carbon fiber by raman sepectrum[D]. Shanghai: Donghua University, 2010: 4-9. | |
[21] |
LAI C L, ZHOU Z P, ZHANG L F, et al. Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors[J]. Journal of Power Sources, 2014, 247:134-141.
doi: 10.1016/j.jpowsour.2013.08.082 |
[22] |
JAYAWICKRAMAGE R A P, FERRARIS J P. High performance supercapacitors using lignin based electrospun carbon nanofiber electrodes in ionic liquid electrolytes[J]. Nanotechnology, 2019, 30(15):155402.
doi: 10.1088/1361-6528/aafe95 |
[23] | 王欢. 木质素碳/ZnO复合材料的制备及在光催化和超级电容器中的应用[D]. 广州: 华南理工大学, 2018: 133-134. |
WANG Huan. Preparation of lignin-based carbon and ZnO composite and its application in photocatalysis and supercapacitor[D]. Guangzhou: South China University of Technology, 2018: 133-134. |
[1] | YAN Tao, PAN Zhijuan. Strain sensing performance for thin and aligned carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(07): 62-68. |
[2] | GUO Fengyun, GUO Ziyi, GAO Lei, ZHENG Linjing. Preparation and properties of thermal bonded fibrous artificial blood vessels [J]. Journal of Textile Research, 2021, 42(06): 46-50. |
[3] | DAI Yang, YANG Nannan, XIAO Yuan. Preparation and properties of resistive flexible humidity sensors using electrospun carbon nanotubes [J]. Journal of Textile Research, 2021, 42(06): 51-56. |
[4] | CHEN Yu, XIA Xin. Preparation and electrochemical properties of liquid GaSn self-repairing anode materials for lithium-ion batteries [J]. Journal of Textile Research, 2021, 42(06): 57-62. |
[5] | LIU Xiaoqian, CHEN Yu, ZHOU Huimin, YAN Yuan, XIA Xin. Preparation of polyacrylonitrile conductive nanofiber yarn grafted with acrylic acid using plasma technology [J]. Journal of Textile Research, 2021, 42(05): 109-114. |
[6] | ZHANG Beilei, SHEN Mingwu, SHI Xiangyang. Preparation and biomedical applications of electrospun short fibers [J]. Journal of Textile Research, 2021, 42(05): 1-8. |
[7] | ZHU Zhexin, MA Xiaoji, XIA Lin, LÜ Wangyang, CHEN Wenxing. Photocatalytic performance of iron hexadecachlorophthalocyanine/ polyacrylonitrile composite nanofibers synergistically enhanced by chloride ion [J]. Journal of Textile Research, 2021, 42(05): 9-15. |
[8] | ZHANG Lin, LI Zhicheng, ZHENG Qinyuan, DONG Jun, ZHANG Yin. Preparation and performance of flexible and anisotropic strain sensor based on electrospinning [J]. Journal of Textile Research, 2021, 42(05): 38-45. |
[9] | YU Meiqiong, YUAN Hongmei, CHEN Lihui. Rheological properties of cellulose/LiCl/ N, N-dimethylacetamide solution [J]. Journal of Textile Research, 2021, 42(05): 23-30. |
[10] | ZHAO Xinzhe, WANG Shaoxia, GAO Jing, WANG Lu. Preparation and properties of electrospun collagen/polyethylene oxide nanofiber membranes [J]. Journal of Textile Research, 2021, 42(04): 33-41. |
[11] | ZHANG Runke, LÜ Wangyang, CHEN Wenxing. Preparation and electrochemical properties of carbon fiber fabric sensors co-modified by cobalt phthalocyanine and carbon nanotubes [J]. Journal of Textile Research, 2021, 42(04): 121-126. |
[12] | CHENG Yue, AN Qi, LI Dawei, FU Yijun, ZHANG Wei, ZHANG Yu. Preparation of SiO2 in-situ doped polyvinylidene fluoride nanofiber membrane and its properties [J]. Journal of Textile Research, 2021, 42(03): 71-76. |
[13] | ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and piezoelectric properties of carbon nanotubes/polyvinylidene fluoride nanofiber membrane [J]. Journal of Textile Research, 2021, 42(03): 44-49. |
[14] | XING Yusheng, HU Yi, CHENG Zhongling. Preparation and properties of Si/TiO2 composite carbon nanofibers [J]. Journal of Textile Research, 2021, 42(03): 36-43. |
[15] | CHEN Junyan, JU Jingge, DENG Nanping, YANG Qi, CHENG Bowen, KANG Weimin. Application of rabbit hair based hollow carbon fiber in lithium-sulfur battery [J]. Journal of Textile Research, 2021, 42(03): 56-63. |
|