Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (07): 39-45.doi: 10.13475/j.fzxb.20200900507

• Invited Column: New Flame Retardant Technology for Textile Materials • Previous Articles     Next Articles

Application of hyperbranched phosphoramide in flame retardant finishing of viscose fabrics

ZHANG Chao1,2,3,4, JIANG Zhiming1,2,3,4(), ZHU Shaotong1, ZHANG Chenxi1,2,3,4, ZHU Ping1,2,3,4   

  1. 1. College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, China
    2. Institute of Functional Textiles and Advanced Materials, Qingdao University, Qingdao, Shandong 266071, China
    3. State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, Shandong 266071, China
    4. Collaborative Innovation Center of Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2020-09-01 Revised:2021-04-07 Online:2021-07-15 Published:2021-07-22
  • Contact: JIANG Zhiming E-mail:jzm070315@163.com

Abstract:

In order to realize synchronously formaldehyde-free and flame retardant properties of viscose fabrics, a flame-retardant viscose fabric was prepared with polyhydroxy hyperbranched phosphoramide (HPAE) and 1,2,3,4-butanetetracarboxylic acid (BTCA) as the flame retardant finishing system in this paper. The surface structure composition, charring performance and burning behavior of the viscose fabric before and after finishing were compared and analyzed, and the effect of the flame retardant system on the tensile breaking strength, wrinkle recovery angle and whiteness of viscose fabric were evaluated. The results show that when the weight gain of the fabric reaches 22.5%, the limiting oxygen index (LOI) value is increased from 21.0% to 28.9%. The fabric can self-extinguish after leaving the fire, and can successfully pass the vertical burning test.The introduction of HPAE greatly improved the carbon-forming ability of the viscose fabric, and the residual char retention rate was 42.9% in the nitrogen atmosphere at 800 ℃.The heat release of the finished fabric in the combustion process was obviously reduced,and the peak heat release rate (pHRR) and the total heat release (THR) decreased by 59.4% and 15.1%, respectively. After 25 standard washings, the LOI value of the fabric dropped from 29.1% to 24.8%.

Key words: viscose fabric, 1,2,3,4-butanetetracarboxylic acid, hyperbranched phosphoramide, flame retardant, flame retardant finishing, functional textiles

CLC Number: 

  • TS195.5

Fig.1

Structural formula of hyperbranched phosphoramide (HPAE)"

Fig.2

SEM images of control fabrics (a) and treated fabrics(b)"

Fig.3

EDX spectra of control fabrics(a) and treated fabrics(b)"

Fig.4

FT-IR spectra of control fabrics and treated fabrics"

Fig.5

Digital photos after vertical flammability test"

Tab.1

Results of weight gain, LOI value and vertical flammability test of control fabrics and treated fabrics"

HPAE质量
浓度/(g·L-1)
质量增加
率/%
LOI
值/%
续燃时
间/s
阴燃时
间/s
损毁长
度/cm
0 21.0 14.6 66.1
100 7.2 22.5 6.6 3.1 30.0
200 17.1 25.1 7.8 0 30.0
300 22.5 28.9 0 0 9.6
400 24.2 29.4 0 0 8.3
500 24.9 29.6 0 0 8.4

Fig.6

SEM images of treated fabric residual carbon at different magnifications"

Fig.7

EDX spectra of treated fabric residual carbon"

Fig.8

FT-IR spectra of control fabric and treated fabric residual carbon"

Fig.9

TG (a) and DTG (b) curves of control fabrics and treated fabrics in nitrogen"

Tab.2

Thermogravimetric data of control fabrics and treated fabrics in nitrogen"

样品 T5%/℃ Tmax/℃ 残炭量/%
Tmax 800 ℃时
对照织物 262 340 45.0 18.8
整理织物 238 279 73.8 42.9

Fig.10

Digital photos of control fabrics (a) and treated fabrics(b)after cone calorimetry test"

Fig.11

Heat release rate (a) and total heat release (b) curves of control fabrics and treated fabrics"

Tab.3

Combustion behavior data of fabrics"

样品 最大热释放速率/
(kW·m-2)
总热释放量/
(MJ·m-2)
平均有效燃烧热/
(MJ·kg-1)
总烟释放量/
(m2·m-2)
二氧化碳与一氧化碳的
质量比
残炭量/%
对照织物 299 5.3 11.9 12.6 11.5
整理织物 121 4.5 8.3 25.4 7.7 13.4

Tab.4

Washing durability data for finished fabric"

水洗次数 质量增加率/% LOI值/%
0 23.2 29.1
5 20.0 26.2
10 18.5 25.8
15 17.7 25.6
20 17.2 25.3
25 16.2 24.8

Tab.5

Results of tensile breaking strength, wrinkle recovery angle and whiteness of fabric"

样品 拉伸断裂强力/N 折皱回复角/(°) 白度/%
经向 纬向
对照织物 388.8±7.1 266.9±9.1 199.7±2.9 77.6±0.3
整理织物 185.0±13.1 79.8±2.9 222.0±5.0 52.4±0.7
[1] 全凤玉, 纪全, 夏延致, 等. 阻燃粘胶纤维的研究及其进展[J]. 纺织学报, 2004, 25(1):121-123.
QUAN Fengyu, JI Quan, XIA Yanzhi, et al. Research and advancement of flame-retardant fiber of regenerated cellulose[J]. Journal of Textile Research, 2004, 25(1):121-123.
[2] 张美荣, 冉国庆, 姚勇波, 等. 硅氮系阻燃粘胶纤维的结构与性能研究[J]. 合成纤维, 2019, 48(6):18-23.
ZHANG Meirong, RAN Guoqing, YAO Yongbo, et al. Study on structure and properties of silicon-nitride flame retardante viscose fiber[J]. Synthetic Fiber in China, 2019, 48(6):18-23.
[3] LIANG S H, WANG F X, LIANG J S, et al. Synergistic effect between flame retardant viscose and nitrogen-containing intrinsic flame-retardant fibers[J]. Cellulose, 2020, 27(10):6083-6092.
doi: 10.1007/s10570-020-03203-9
[4] MA D, LI J. Synjournal of a bio-based triazine derivative and its effects on flame retardancy of polypropylene composites[J]. Journal of Applied Polymer Science, 2020, 137(1):245-253.
[5] 邹旭, 王倩倩, 朱平. 磷-氮阻燃剂的合成及整理棉织物性能[J]. 精细化工, 2020, 37(4):815-820,833.
ZOU Xu, WANG Qianqian, ZHU Ping. Synjournal of phosphorus-nitrogen flame retardant and the properties of treated cotton fabrics by it[J]. Fine Chemicals, 2020, 37(4):815-820,833.
[6] YANG C Q, WU W D. Combination of a hydroxy-functional organophosphorus oligomer and a multifunctional carboxylic acid as a flame retardant finishing system for cotton: part I. the chemical reactions[J]. Fire and Materials, 2003, 27(5):223-237.
doi: 10.1002/(ISSN)1099-1018
[7] WANG Q F, SHI W F. Synjournal and thermal decomposition of a novel hyperbranched polyphosphate ester used for flame retardant systems[J]. Polymer Degradation and Stability, 2006, 91(6):1289-1294.
doi: 10.1016/j.polymdegradstab.2005.09.001
[8] 张亚光, 李文霞, 姜鹏, 等. 棉用耐久型无醛阻燃剂的制备及应用[J]. 纺织学报, 2013, 34(3):76-81.
ZHANG Yaguang, LI Wenxia, JIANG Peng, et al. Preparation and application of durable non-formaldehyde flame retardants for cotton[J]. Journal of Textile Research, 2013, 34(3):76-81.
[9] CHEN X, JIAO C, LI S, et al. Flame retardant epoxy resins from bisphenol-A epoxy cured with hyperbranched polyphosphate ester[J]. Journal of Polymer Research, 2011, 18(6):2229-2237.
doi: 10.1007/s10965-011-9636-0
[10] LI Z, WEI P, YANG Y, et al. Synjournal of a hyperbranched poly(phosphamide ester) oligomer and its high-effective flame retardancy and accelerated nucleation effect in polylactide composites[J]. Polymer Degradation and Stability, 2014, 110:104-112.
doi: 10.1016/j.polymdegradstab.2014.08.024
[11] GUAN J, YANG C Q, CHEN G. Formaldehyde-free flame retardant finishing of silk using a hydroxyl-functional organophosphorus oligomer[J]. Polymer Degradation and Stability, 2009, 94(3):450-455.
doi: 10.1016/j.polymdegradstab.2008.10.024
[12] TIAN P X, LIU M S, WAN C Y, et al. Synjournal of a formaldehyde-free flame retardant for cotton fabric[J]. Cellulose, 2019, 26(18):9889-9899.
doi: 10.1007/s10570-019-02751-z
[13] ZHAO B, LIU Y T, ZHANG C Y, et al. A novel phosphoramidate and its application on cotton fabrics: synjournal, flammability and thermal degradation[J]. Journal of Analytical and Applied Pyrolysis, 2017, 125:109-116.
doi: 10.1016/j.jaap.2017.04.011
[14] LIU W, CHEN L, WANG Y Z. A novel phosphorus-containing flame retardant for the formaldehyde-free treatment of cotton fabrics[J]. Polymer Degradation and Stability, 2012, 97(12):2487-2491.
doi: 10.1016/j.polymdegradstab.2012.07.016
[15] 夏郁葱. 国产阻燃粘胶纤维技术现状和发展趋势[J]. 纺织学报, 2012, 33(6):129-135.
XIA Yucong. Technology status and development trend of national flame-retardant viscose fibers[J]. Journal of Textile Research, 2012, 33(6):129-135.
[16] LIU Z, XU M, WANG Q, et al. A novel durable flame retardant cotton fabric produced by surface chemical grafting of phosphorus- and nitrogen-containing compounds[J]. Cellulose, 2017, 24(9):4069-4081.
doi: 10.1007/s10570-017-1391-x
[17] 冯倩倩, 朱方龙, 信群, 等. 膨胀型阻燃棉织物的热降解动力学[J]. 纺织学报, 2016, 37(12):81-86.
FENG Qianqian, ZHU Fanglong, XIN Qun. Thermal degradation behaviors and kinetics of intumescent flame-retardant cotton fabric[J]. Journal of Textile Research, 2016, 37(12):81-86.
[18] FENG Y, ZHOU Y, LI D, et al. A plant-based reactive ammonium phytate for use as a flame-retardant for cotton fabric[J]. Carbohydrate Polymers, 2017, 175:636-644.
doi: 10.1016/j.carbpol.2017.06.129
[19] KE G, XIAO Z, JIN X, et al. Wrinkle recovery angle enhancement and tensile strength loss of 1,2,3,4-butanetetracarboxylic acid finished lyocell fabrics[J]. Textile Research Journal, 2020, 90(17/18):2097-2108.
doi: 10.1177/0040517520912035
[20] SRICHARUSSIN W, RYO-AREE W, INTASEN W, et al. Effect of boric acid and BTCA on tensile strength loss of finished cotton fabrics[J]. Textile Research Journal, 2004, 74(6):475-480.
doi: 10.1177/004051750407400602
[1] ZHANG Jiaojiao, LI Yuyang, LIU Yun, DONG Chaohong, ZHU Ping. Flame retardant and antibacterial treatments for cotton-viscose blended fabrics [J]. Journal of Textile Research, 2021, 42(07): 31-38.
[2] LIU Ke, CHEN Shuang, XIAO Ru. Preparation and properties of synergistic flame retardant copolyamide 6 fiber with phosphaphenanthrene group [J]. Journal of Textile Research, 2021, 42(07): 11-18.
[3] XU Kai, TIAN Xing, CAO Ying, HE Yaqi, XIA Yanzhi, QUAN Fengyu. Preparation and property of flame retardant polyester/calcium alginate fiber composites [J]. Journal of Textile Research, 2021, 42(07): 19-24.
[4] LIN Shenggen, LIU Xiaohui, SU Xiaowei, HE Ju, REN Yuanlin. Preparation and properties of Lyocell fibers and fabrics modified with new phytic acid based flame retardant [J]. Journal of Textile Research, 2021, 42(07): 25-30.
[5] GU Weiwen, WANG Wenqing, WEI Lifei, SUN Chenying, HAO Dan, WEI Jianfei, WANG Rui. Influence of carbon dots on properties of flame retardant poly(ethylene terephthalate) [J]. Journal of Textile Research, 2021, 42(07): 1-10.
[6] SUN Chenying, WANG Wenqing, JIN Gaoling, WANG Rui. Research advances in thermoplastic polymers for flame retardant and anti-dripping behavior [J]. Journal of Textile Research, 2021, 42(06): 171-179.
[7] WEN Yufeng, MA Xiaopu, SHENG Fangyuan, ZHU Zhiguo. Preparation of microencapsulated intumescent flame retardant and its use in polylactic acid [J]. Journal of Textile Research, 2021, 42(06): 71-77.
[8] LUO Xiaolei, LI Ziyan, MA Ya'nan, LIU Lin, KRUCINSKA Izabella, YAO Juming. Progress in ecological flame retardant technology for textiles [J]. Journal of Textile Research, 2021, 42(05): 193-202.
[9] LI Yonghe, QU Lingxi, XU Bi, CAI Zaisheng, GE Fengyan. One-step foam finishing of flame retardancy and three-proof finishing for bio-based polytrimethylene terephthalate fabrics [J]. Journal of Textile Research, 2021, 42(04): 8-15.
[10] WANG Huaqing, YAN Hongqiang. Construction of bio-based three-component self-assembled coating for flame retardancy of ramie fabrics [J]. Journal of Textile Research, 2021, 42(04): 132-138.
[11] ZHANG Chentian, ZHAO Lianying, GU Xuefeng. Wearability of hollow coffee carbon polyester/cotton blended weft plain knitted fabric [J]. Journal of Textile Research, 2021, 42(03): 102-109.
[12] ZHOU Yingyu, WANG Rui, JIN Gaoling, WANG Wenqing. Research progress of applications of photo-induced surface modification technique in flame retardant fabrics [J]. Journal of Textile Research, 2021, 42(03): 181-189.
[13] DING Zihan, QIU Hua. Preparation and performance of nano-silica modified water-based polyurethane waterproof and moisture-permeable coated fabrics [J]. Journal of Textile Research, 2021, 42(03): 130-135.
[14] MA Ya'nan, SHEN Junyan, LUO Xiaolei, ZHANG Cong, SHANG Xiaolei, LIU Lin, KRUCINSKA Izabella, YAO Juming. Preparation and properties of high efficiency halogen-free flame-retardant cotton fabrics [J]. Journal of Textile Research, 2021, 42(03): 122-129.
[15] MENG Lingling, WEI Qufu, YAN Zhongjie, ZHONG Zhenzhen, WANG Xiaohui, SHEN Jiayu, CHEN Hongwei. Preparation and properties of Ag/ZnO composite film deposited polyester fabrics by magnetron sputtering [J]. Journal of Textile Research, 2021, 42(03): 143-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!