Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (05): 23-30.doi: 10.13475/j.fzxb.20200901808

• Fiber Materials • Previous Articles     Next Articles

Rheological properties of cellulose/LiCl/ N, N-dimethylacetamide solution

YU Meiqiong1,2, YUAN Hongmei1, CHEN Lihui1()   

  1. 1. College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, China
    2. School of Ocean Science and Biochemistry Engineering, Fujian Polytechnic Normal University, Fuqing, Fujian 350300, China
  • Received:2020-09-07 Revised:2021-01-08 Online:2021-05-15 Published:2021-05-20
  • Contact: CHEN Lihui E-mail:lihuichen66@126.com

Abstract:

In order to investigate the effect of rheological properties of cellulose solution on the spinnability of electrospinning, the steady and dynamic rheological properties of cellulose/LiCl/N, N-dimethylacetamide(DMAc)solution were studied,and electrospinning was carried out on this basis. It was found that the cellulose/LiCl/DMAc solutions were pseudoplastic fluid. The research results showed that the apparent viscosity, consistency coefficient and structural viscosity index of the solution decrease with the increase of temperature and increase with the increase of cellulose mass fraction, while the variations of non-Newtonian index were opposite. The non-Newtonian indices of the 2.5% and 3.0% cellulose/LiCl/DMAc solutions were closer to 1 at 20-60 ℃, meaning that the solutions have stable rheological properties. The structural viscosity indices of the 2.5% and 3.0% cellulose/LiCl/DMAc solutions were smaller, making them easier to spin, with 3.0% cellulose/LiCl/DMAc solution the optimal for electrospinning at room temperature.

Key words: cellulose, LiCl/N, N-dimethylacetamide, steady state rheology, dynamic rheology, electrospinning, spinnability

CLC Number: 

  • O636.11

Fig.1

Steady state rheological behavior of cellulose/LiCl/DMAc solutions at different temperature"

Tab.1

Non-Newtonian index n and consistency coefficient K of cellulose/LiCl/DMAc solutions at different temperatures"

温度/℃ K n
2.5% 3.0% 3.5% 4.0% 2.5% 3.0% 3.5% 4.0%
20 8.740 16.361 25.634 43.971 0.812 0.753 0.736 0.702
30 5.293 9.755 16.482 29.827 0.857 0.810 0.772 0.732
40 3.461 7.036 11.863 19.640 0.888 0.834 0.791 0.772
50 2.591 4.393 7.329 13.233 0.874 0.860 0.832 0.799
60 1.969 3.108 5.522 9.557 0.883 0.879 0.842 0.824

Tab.2

Structural viscosity index Δη of cellulose/LiCl/DMAc solutions at different temperatures"

温度/℃ Δη
2.5% 3.0% 3.5% 4.0%
20 7.559 9.582 10.216 11.486
30 6.007 7.645 8.943 10.384
40 4.852 6.785 8.246 8.939
50 5.006 5.697 6.778 8.002
60 5.510 4.922 6.297 7.032

Fig.2

Viscous flow activation energy of cellulose/LiCl/DMAc solution at different shear rates"

Fig.3

Dynamic rheological properties of cellulose/LiCl/DMAc solution with different mass fractions. (a) G' and G″ variation with frequency; (b) η* variation with frequency"

Fig.4

Dynamic rheological properties of cellulose/LiCl/DMAc solution at different temperatures. (a) G' and G″ variation with frequency; (b) η* variation with frequency"

Fig.5

Pictures of electrospun of cellulose/LiCl/DMAc solution with different mass fractions"

Fig.6

SEM images of electrospun fibers from 3.0% cellulose/LiCl/DMAc solution with diffrent magnification"

[1] DRUEL L, NIEMEYER P, MILOW B, et al. Rheology of cellulose-[DBNH][CO2Et] solutions and shaping into aerogel beads[J]. Green Chemistry, 2018,20(17):3993-4002.
doi: 10.1039/C8GC01189C
[2] 史铁钧, 吴德峰. 高分子流变学基础[M]. 北京: 化学工业出版社, 2009:27-30.
SHI Tiejun, WU Defeng. Fundamentals of polymer rheo-logy[M]. Beijing: Chemical Industry Press, 2009:27-30.
[3] KIM C W, KIM D S, KANG S Y, et al. Structural studies of electrospun cellulose nanofibers[J]. Polymer, 2006,47(14):5097-5107.
doi: 10.1016/j.polymer.2006.05.033
[4] 陈丹妮, 姜泽明, 张力平. 季铵型离子液体为溶剂的纤维素溶液流变性能研究[J]. 高分子通报, 2017(12):45-53.
CHEN Danni, JIANG Zeming, ZHANG Lipin. Rheological properties of quaternary ammonium/DMSO/cellulose solutions[J]. Polymer Bulletin, 2017 (12):45-53.
[5] ZHANG L H, SHI W T, WANG J Q, et al. Unique gelation and rheological properties of the cellulose/CO2-based reversible ionic liquid/DMSO solutions[J]. Carbohydrate Polymers, 2019,222:115024.
doi: 10.1016/j.carbpol.2019.115024
[6] WANG L J, GAO L, CHENG B W, et al. Rheological behaviors of cellulose in 1-ethyl-3-methylimidazolium chloride/dimethylsulfoxide[J]. Carbohydrate Polymers, 2014,110:292-297.
doi: 10.1016/j.carbpol.2014.03.091
[7] CHEN X, ZHANG Y M, CHENG L Y, et al. Rheology of concentrated cellulose solutions in 1-Butyl-3-methylimidazolium chloride[J]. Journal of Polymers and the Environment, 2009,17(4):273-279.
doi: 10.1007/s10924-009-0149-4
[8] DUPONT A L. Cellulose in lithium chloride/N, N-dimethylacetamide, optimisation of a dissolution method using paper substrates and stability of the solutions[J]. Polymer, 2003,44:4117-4126.
doi: 10.1016/S0032-3861(03)00398-7
[9] 王铁群, 阮金月, 颜少琼, 等. 纤维素LiCl/DMAc体系的溶液特征[J]. 纤维素科学与技术, 1996,4(3):7-13.
WANG Tiequn, RUAN Jinyue, YAN Shaoqiong, et al. Solution characteristics of cellulose inlithum chloride and N,N-dimethylacetamid[J]. Journal of Cellulose Science and Technology, 1996,4(3):7-13.
[10] 哈丽丹·买买提. 纤维素LiCl/DMAc溶液的制备及其稳定性[J]. 纺织学报, 2010,31(8):6-11.
HALIDAN Mamat. Preparation and stability of cellulose LiCl/DMAc solution[J]. Journal of Textile Research, 2010,31(8):6-11.
[11] 程雨桐, 汪东, 袁红梅, 等. 不同溶剂溶解制备纤维素溶液及其流变性能[J]. 中国造纸学报, 2020,35(1):1-6.
CHENG Yutong, WANG Dong, YUAN Hongmei, et al. Preparation and rheological properties of cellulose solutions from different solvents[J]. Transactions of China Pulp and Paper, 2020,35(1):1-6.
[12] WANG S J, LUO T, ZHANG X M, et al. Manipulation of native cellulose eletrospinning from LiCl-DMAc system[J]. Chemical Journal of Chinese Universities, 2017,38(6):990-996.
[13] 张秀超, 张丽改, 代永强, 等. 高分子量微生物纤维素LiCl/DMAc纺丝溶液流变性研究[J]. 化工新型材料, 2014,42(10):140-142.
ZHANG Xiuchao, ZHANG Ligai, DAI Yongqiang, et al. Rheological property of solutions of high molecular weight bacterial cellulose in LiCl/N,N-dimethylacetamide[J]. New Chemical Materials, 2014,42(10):140-142.
[14] 万和军, 尤丽霞, 熊杰, 等. 天然彩色棉LiCl/DMAc溶液流变性能的研究[J]. 纺织学报, 2010,31(6):11-16.
WAN Hejun, YOU Lixia, XIONG Jie, et al. Study on rheological properties of naturally coloredcotton fiber/LiCl/DMAc solution[J]. Journal of Textile Research, 2010,31(6):11-16.
[15] HE X, CHENG L, ZHANG X M, et al. Tissue engineering scaffolds electrospun from cotton cellulose[J]. Carbohydrate Polymers, 2015,115:485-493.
doi: 10.1016/j.carbpol.2014.08.114
[16] 郑瑾, 王治凯, 王怀芳, 等. [BMIM]AC为溶剂的纤维素纺丝溶液流变性研究[J]. 中原工学院学报, 2013,24(3):33-37.
ZHENG Jin, WANG Zhikai, WANG Huaifang, et al. Rheological behavior of cellulose spinning solution with [BMIM]AC as solvent[J]. Journal of Zhongyuan University of Technology, 2013,24(3):33-37.
[17] 李亮, 刘淑萍, 刘让同. NaOH/尿素溶液中纤维素稳态流变性的浓度依赖性[J]. 纺织科技进展, 2017(9):30-33.
LI Liang, LIU Shuping, LIU Rangtong. Concentration dependence of cellulose steady-state rheological property in NaOH/urea aqueous solution[J]. Progress in Textile Science & Technology, 2017(9):30-33.
[18] 林珊, 陈礼辉, 周永辉. 纤维素/壳聚糖/ZnCl2·4H2O溶液的制备及其流变性能[J]. 华中师范大学学报(自然科学版), 2012,46(6):700-704.
LIN Shan, CHEN Lihui, ZHOU Yonghui. Preparation and rheological properties of cellulose/chitosan/ZnCl2·4H2O solution[J]. Journal of Huazhong Normal University(Natural Science Edition), 2012,46(6):700-704.
[19] LI Y, LIU X F, ZHUANG X P, et al. Rheological behavior and spinnability of ethylamine hydroxyethyl chitosan/cellulose co-solution in N-methylmorpholine-N-oxide system[J]. Fibers and Polymers, 2016,17(5):778-788.
doi: 10.1007/s12221-016-5578-9
[20] 杨革生, 冯坤, 邵惠丽, 等. 竹纤维素/NMMO·H2O溶液流变性能的研究[J]. 纤维素科学与技术, 2008,16(3):54-59.
YANG Gesheng, FENG Kun, SHAO Huili, et al. Study on the rheological behaviors of bamboo cellulose/NMMO·H2O solutions[J]. Journal of Cellulose Science and Technology, 2008,16(3):54-59.
[21] 臧昆, 臧己. 纺丝流变学基础[M]. 北京: 中国纺织出版社, 1993: 269.
ZANG Kun, ZANG Ji. Fundamentals of spinning rheology [M]. Beijing: China Textile & Apparel Press, 1993: 269.
[22] 徐佩弦. 高聚物流变学及其应用[M]. 北京: 化学工业出版社, 2003: 49-57.
XU Peixian. Polymer rheology and application[M]. Beijing: Chemical Industry Press, 2003: 49-57.
[23] 欧阳鹏飞, 张沛然, 张玉芳. 竹纤维素浆粕/[AMIM]Cl/DMSO复配溶液的流变特性研究[J]. 北京服装学院学报(自然科学版), 2018,38(4):17-22.
OUYANG Pengfei, ZHANG Peiran, ZHANG Yufang. Rheological behavior of bamboo cellulose pulp/[AMIM]Cl/DMSO combined solution[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition), 2018,38(4):17-22.
[1] ZHANG Beilei, SHEN Mingwu, SHI Xiangyang. Preparation and biomedical applications of electrospun short fibers [J]. Journal of Textile Research, 2021, 42(05): 1-8.
[2] ZHU Zhexin, MA Xiaoji, XIA Lin, LÜ Wangyang, CHEN Wenxing. Photocatalytic performance of iron hexadecachlorophthalocyanine / polyacrylonitrile composite nanofibers synergistically enhanced by chloride ion [J]. Journal of Textile Research, 2021, 42(05): 9-15.
[3] ZHANG Lin, LI Zhicheng, ZHENG Qinyuan, DONG Jun, ZHANG Yin. Preparation and performance of flexible and anisotropic strain sensor based on electrospinning [J]. Journal of Textile Research, 2021, 42(05): 38-45.
[4] ZHAO Xinzhe, WANG Shaoxia, GAO Jing, WANG Lu. Preparation and properties of electrospun collagen/polyethylene oxide nanofiber membranes [J]. Journal of Textile Research, 2021, 42(04): 33-41.
[5] CHENG Yue, AN Qi, LI Dawei, FU Yijun, ZHANG Wei, ZHANG Yu. Preparation of SiO2 in-situ doped polyvinylidene fluoride nanofiber membrane and its properties [J]. Journal of Textile Research, 2021, 42(03): 71-76.
[6] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and piezoelectric properties of carbon nanotubes/polyvinylidene fluoride nanofiber membrane [J]. Journal of Textile Research, 2021, 42(03): 44-49.
[7] XING Yusheng, HU Yi, CHENG Zhongling. Preparation and properties of Si/TiO2 composite carbon nanofibers [J]. Journal of Textile Research, 2021, 42(03): 36-43.
[8] HU Jing, ZHANG Kaiwei, LI Ranran, LIN Jinyou, LIU Yuqing. Preparation of flax layered nano-cellulose and properties of its reinforced thermoelectric composites [J]. Journal of Textile Research, 2021, 42(02): 47-52.
[9] GUO Xuesong, GU Jiayi, HU Jianchen, WEI Zhenzhen, ZHAO Yan. Preparation and properties of polyacrylonitrile/carboxyl styrene butadiene latex composite nanofibrous membranes [J]. Journal of Textile Research, 2021, 42(02): 34-40.
[10] WANG Ying, WANG Yiting, WU Jiaqing, GUO Yafei, HAO Xinmin. Preparation of compound antistatic spinning oil for bio-based polyamide 56 and its effect on staple fiber spinnability [J]. Journal of Textile Research, 2021, 42(01): 84-89.
[11] CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174.
[12] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[13] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[14] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[15] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan/polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!