Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (03): 1-8.doi: 10.13475/j.fzxb.20200903308

• Invited Column:Full-process Open Width Printing and Dyeing Technology for Knitted Fabric •     Next Articles

Catalytic degradation of lignin and lignin model compound by copper complexes in bleaching cotton knitted fabrics

LIU Libin, LÜ Wangyang(), CHEN Wenxing   

  1. National Engineering Laboratory for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2020-09-15 Revised:2020-12-21 Online:2021-03-15 Published:2021-03-17
  • Contact: Lü Wangyang E-mail:luwy@zstu.edu.cn

Abstract:

In order to improve the bleaching efficiency of cotton knitted fabrics and to further understand the bleaching mechanisms, divalent copper ions, iminodiacetic acid and 4-dimethylaminopyridine were utilized to prepare a copper complex catalyst. A bleaching system was constructed to study the change of whiteness of catalyst bleached cotton knitted fabric under different temperatures in a short time. Gas chromatography-mass spectrometry was used to analyze the degradation of lignin and lignin model compound in the intermediate and final products, and to study the bleaching mechanism. The results show that after reacting for 5 minutes at 90 ℃, the whiteness value of the cotton knitted fabric reaches about 78%, the capillary effect can goes to 17.9 cm, and the strength retention rate of the fabric is about 98%. Both lignin and its model compound can be degraded into aromatic hydrocarbon molecules and further mineralized into water and carbon dioxide. The improvement of conditions used in the bleaching process using the bleaching system can effectively improve the bleaching efficiency of cotton knitted fabrics and the research findings on the bleaching mechanism provide reference for improving the bleaching system.

Key words: bleaching, pre-treatment, catalytic bleaching system, copper complex, lignin degradation, whiteness, cotton knitted fabric

CLC Number: 

  • TS192.5

Fig.1

Changes of whiteness after 5 min bleaching under different temperature conditions"

Fig.2

Change of whiteness before and after adding catalyst at 90 ℃"

Tab.1

Comparison of bleaching effects of catalytic bleaching process and high temperature alkali oxygen process"

漂白工艺 CIE白度/% 毛效(30 min)/cm 顶破强力/N
5 min 50 min 5 min 50 min
未处理 0 0 0 0 690.53±15.40
催化漂白工艺 78.77 88.10 17.90 19.80 680.70±7.30
高温碱氧工艺 63.93 75.34 2.80 16.80 436.20±8.70

Fig.3

Effect of pH values on degradation of lignin"

Fig.4

Effect of H2O2 concentration on degradation of lignin"

Fig.5

Effect of catalyst concentration on degradation of lignin"

Fig.6

Color change of lignin solution"

Tab.2

Changes of main intermediate products of lignin at different degradation times"

产物名称 产物结构 峰面积
0 min 30 min 60 min
4-羟基苯甲醛 0 1.66×106 0
4-羟基-3-甲氧基苯甲醛 0.14×107 1.37×107 0
1-(4-羟基-3-甲氧基苯基)乙-1-酮 0 5.06×105 0
4-羟基-3-甲氧基苯甲酸 0 1.66×106 0
4-羟基-3,5-二甲氧基苯甲醛 1.15×106 3.91×106 0
1-(4-羟基-3,5-二甲氧基苯基)乙-1-酮 1.45×106 2.75×106 0

Tab.3

Analysis of carbon content of lignin solution"

试样 质量浓度/(mg·L-1)
总无机碳 总有机碳 总碳
水溶液 0.98 5.32 6.30
木质素溶液降解0 min 16.13 37.70 53.83
木质素溶液降解60 min 14.54 19.44 33.98

Fig.7

Conjecture on degradation process of lignin model compound"

[1] 徐顺成. 针织物染整工艺技术的现状及发展趋势[C] //浙江省印染行业协会.2013东升数码杯节能减排与印染新技术交流会资料集.杭州:浙江省科学技术协会, 2013: 82-86.
XU Shuncheng. The status quo and development trend of knitted fabric dyeing and finishing technology[C] // Zhejiang Printing and Dyeing Industry Association. 2013 Dongsheng Digital Cup Energy Saving, Emission Reduction and Printing and Dyeing New Technology Exchange Conference Information Collection. Hangzhou:Zhejiang Association for Science and Technology, 2013: 82-86.
[2] 赵文杰, 张晓云, 钟毅, 等. 棉针织物的冷轧堆前处理与染色[J]. 纺织学报, 2016,37(6):76-82.
ZHAO Wenjie, ZHANG Xiaoyun, ZHONG Yi, et al. Cold pad-batch pretreatment and dyeing of cotton knits[J]. Journal of Textile Research, 2016,37(6):76-82.
[3] 张帆, 张儒, 周文常, 等. 金属铜配合物催化双氧水用于棉针织物的低温漂白[J]. 纺织学报, 2019,40(8):101-108.
ZHANG Fan, ZHANG Ru, ZHOU Wenchang, et al. Low-temperature bleaching of cotton knitted fabrics using hydrogenperoxide in presence of copper complex catalysts[J]. Journal of Textile Research, 2019,40(8):101-108.
doi: 10.1177/004051757004000202
[4] 范娇丽, 张琳萍, 钟毅, 等. 棉针织物的铁配合物低温催化漂白[J]. 印染, 2019,45(21):1-6.
FAN Jiaoli, ZHANG Linping, ZHONG Yi, et al. Low temperature catalytic bleaching of cotton knitted fabric with iron complexes[J]. China Dyeing & Finishing, 2019,45(21):1-6.
[5] RUBEN V, DEMEDTS B, MORREEL K, et al. Lignin biosynjournal and structure[J]. Plant Physiology, 2010,153(3):895-905.
doi: 10.1104/pp.110.155119 pmid: 20472751
[6] JOHN Ralph, CATHERINE Lapierre, WOUT Boerjan. Lignin structure and its engineering[J]. Current Opinion in Biotechnology, 2019,56:240-249.
doi: 10.1016/j.copbio.2019.02.019 pmid: 30921563
[7] ALIREZA R, ARNE U, JOSHUA J, et al. Formic-acid-induced depolymerization of oxidized lignin to aromatics[J]. Nature, 2014,515:249-252.
doi: 10.1038/nature13867 pmid: 25363781
[8] HEIKKI K, PETRO L, VÄINÖ S, et al. An efficient method to investigate metal-ligand combinations for oxygen bleaching[J]. Applied Catalysis A:General, 2004,268:199-206.
[9] WANG Y, XIA H C, SUN K, et al. Insights into the generation of high-valent copper-oxo species in ligand-modulated catalytic system for oxidizing organic pollutants[J]. Chemical Engineering Journal, 2016,304:1000-1008.
[10] 吴臣仁, 吕汪洋. 铜配合物催化双氧水氧化木质素磺酸钠的研究[J]. 现代纺织技术, 2020,28(2):45-51.
WU Chenren, LÜ Wangyang. Study on oxidation of sodium lignosulfonate with hydrogen peroxide catalyzed by copper complex[J]. Advanced Textile Technology, 2020,28(2):45-51.
[11] 吴臣仁, 吕汪洋. 铜配合物用于棉针织物低温酶氧一浴漂白[J]. 现代纺织技术, 2020,28(1):76-81.
WU Chenren, LÜ Wangyang. Application of copper complex in low temperature bleaching of cotton knitted fabric with enzyme and peroxide in one bath[J]. Advanced Textile Technology, 2020,28(1):76-81.
[12] 吴臣仁, 吕汪洋, 陈文兴. 铜配合物在棉针织物低温中性漂白中的应用[J]. 纺织学报, 2019,40(1):91-96.
WU Chenren, LÜ Wangyang, CHEN Wenxing. Application of copper complex in low-temperature neutral bleaching of cotton knitted fabrics[J]. Journal of Textile Research, 2019,40(1):91-96.
[13] 张文, 张贵, 张伟. pH值对人造棉漂白织物颜色的影响[J]. 轻纺工业与技术, 2016,45(4):28-30,71.
ZHANG Wen, ZHANG Gui, ZHANG Wei. The influence of pH on the color of rayon bleached fabric[J]. Light and Textile Industry and Technology, 2016,45(4):28-30,71.
[14] BARTA K, WARNER G, BEACH E S, et al. Depolymerization of organosolv lignin to aromatic compounds over Cu-doped porous metal oxides[J]. Green Chemistry, 2014,16:191-195.
doi: 10.1039/C3GC41184B
[15] FABBRINI M, GALLI C, GENTILI P. Comparing the catalytic efficiency of some mediators of laccase[J]. Journal of Molecular Catalysis B: Enzymatic, 2002,16(5/6):231-240.
[16] CHAKAR F S, RAGAUSKAS A J. Review of current and future softwood kraft lignin process chemistry[J]. Industrial Crops & Products, 2004,20(2):131-141.
[17] ROBINSON M J, WRIGHT L J, SUCKLING I D. Fe(TSPc)-catalysed benzylic oxidation and subsequent dealkylation of a non-phenolic lignin model[J]. Journal of Wood Chemistry & Technology, 2000,20(4):357-373.
[18] RAHIMI A, AZARPIRA A, KIM H, et al. Chemoselective metal-free aerobic alcohol oxidation in lignin[J]. Journal of the American Chemical Society, 2013,135:6415-6418.
doi: 10.1021/ja401793n pmid: 23570328
[19] SUN Z BÁLINT F SANTI A D, et al. Bright side of lignin depolymerization: toward new platform chemicals[J]. Chemical Reviews, 2018,118(2):614-678.
doi: 10.1021/acs.chemrev.7b00588 pmid: 29337543
[1] DING Zihan, QIU Hua. Preparation and performance of nano-silica modified water-based polyurethane waterproof and moisture-permeable coated fabrics [J]. Journal of Textile Research, 2021, 42(03): 130-135.
[2] WU Shouying, ZHANG Linping, XU Hong, ZHONG Yi, MAO Zhiping. Research progress of low-temperature bleaching of cotton fabrics catalyzed by metal complexes [J]. Journal of Textile Research, 2021, 42(03): 27-35.
[3] ZHANG Tengjialu, WU Wei, ZHONG Yi, MAO Zhiping, XU Hong. Effect of open width pretreatment on dyeing property of cotton knitted fabrics [J]. Journal of Textile Research, 2021, 42(03): 9-13.
[4] XIANG Zhong, WANG Yuhang, WU Jinbo, QIAN Miao, HU Xudong. Research progress in detection of hydrogen peroxide concentration [J]. Journal of Textile Research, 2020, 41(10): 197-204.
[5] ZHANG Juan, ZHENG Huanda, QIAO Yan, GAO Shihui, ZHENG Laijiu. Scouring and bleaching process for flax roves using supercritical CO2 [J]. Journal of Textile Research, 2020, 41(07): 93-101.
[6] HE Qingqing, XU Hong, MAO Zhiping, ZHANG Linping, ZHONG Yi, LÜ Jingchun. Preparation of high-electrical conductivity polypyrrole-coated fabrics [J]. Journal of Textile Research, 2019, 40(10): 113-119.
[7] ZHANG Yue, HU Danling, REN Jinna, LI Qing. Scouring and bleaching of cotton fabric by low temperature near neutrality one-bath one-step process [J]. Journal of Textile Research, 2019, 40(09): 83-90.
[8] ZHANG Fan, ZHANG Ru, ZHOU Wenchang, ZHOU Hui, WANG Nanfang. Low-temperature bleaching of cotton knitted fabrics using hydrogen peroxide in presence of copper complex catalysts [J]. Journal of Textile Research, 2019, 40(08): 101-108.
[9] TAO Kaixin, YU Chengbing, HOU Qi'ao, WU Congjie, LIU Yinfeng. Wet-steaming dyeing prediction model of cotton knitted fabric with reactive dye based on least squares support vector machine [J]. Journal of Textile Research, 2019, 40(07): 169-173.
[10] TANG Wenjun, PENG Minghua, XIANG Zhonglin, SHAO Dongyan, NI Jiadong, XU Changhai. Rapid pad-steam peroxide bleaching process of cotton woven fabric using a cationic bleach activator [J]. Journal of Textile Research, 2019, 40(02): 125-129.
[11] WU Chenren, LÜ Wangyang, CHEN Wenxing. Application of copper complex in low-temperature neutral bleaching of cotton knitted fabrics [J]. Journal of Textile Research, 2019, 40(01): 91-96.
[12] . Application of porphyrin iron/H2O2 system in low temperature bleaching of cotton fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 75-80.
[13] . Influence of degreasing and bleaching process on performance of pure cotton spunlaced nonwovens used for medical treatment and hygiene [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 88-93.
[14] . Preparation ana durable antibacterial fabric loaded with doped nano-TiO2 [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(06): 163-168.
[15] . Anti-crease finishing of ramie fabrics with citric acid and polyol [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(05): 104-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!