Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (11): 187-196.doi: 10.13475/j.fzxb.20200903610

• Comprehensive Review • Previous Articles     Next Articles

Progress in application of photodynamic antibacterial technology for textiles

WANG Zhihui1, XU Yufei1, GUO Haoyu2, ZHANG Kanglei1, PANG Xingchen3, NIE Xiaolin1, ZHUGE Jian2, WEI Qufu1()   

  1. 1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
    3. School of Design, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2020-09-15 Revised:2021-08-04 Online:2021-11-15 Published:2021-11-29
  • Contact: WEI Qufu E-mail:qfwei@jiangnan.edu.cn

Abstract:

In order to study the antibacterial effect of photosensitizers loaded on textile materials and the possibility of its application for textile modifications, the research background of photodynamic antibacterial, types of photosensitizers, current applications of antibacterial textiles, and photosensitizers were systematically reviewed. The commonly used loading forms of the drug are examined, and the conclusions and future prospects are summarized. The review indicates that photodynamic antibacterial textiles are a new type of antibacterial material that can be effectively sterilized and has a good development prospect. The improved loading method through chemical covalent bonding of photosensitizers can solve the problems of poor binding fastness and poor reusability associated with the commonly used loading methods, and can further broaden the research and development path of antibacterial materials. At the same time, it is realized that the current photosensitizers have not been able to control accurately their photosensitizing antibacterial properties. Future research should control the photosensitive antibacterial properties by controlling the types of photosensitizers and the concentration of photosensitizers.

Key words: photodynamic antibacterial, photosensitizer, textiles modification, antibacterial fabric, functional textiles

CLC Number: 

  • O636.11
[1] 董建成. 纤维素基/卟啉光敏材料的制备及其抗菌性能[D]. 无锡: 江南大学, 2019: 1-58.
DONG Jiancheng. Preparation and antibacterial property of photoactive cellulose/porphyrin materials[D]. Wuxi: Jiangnan University, 2019: 1-58.
[2] DECRAENE V, PRATEEN J, WILSON M. Cellulose acetate containing toluidine blue and rose bengal is an effective antimicrobial coating when exposed to white light[J]. Applied and Environmental Microbiology, 2006, 72(6):4436-4439.
doi: 10.1128/AEM.02945-05
[3] FISCHBACH M A, WALSH C T. Antibiotics for emerging pathogens[J]. Science, 2009, 325(5944):1089-1093.
doi: 10.1126/science.1176667
[4] 王旭阳, 毛雯, 龚国利. 抗生素类药物的研究进展[J]. 食品安全质量检测学报, 2020, 11(9):2880-2886.
WANG Xuyang, MAO Wen, GONG Guoli. Research progress on antibiotics[J]. Journal of Food Safety and Quality, 2020, 11(9):2880-2886.
[5] ELDER D P, KUENTZ M, HOLM R. Antibiotic resistance: the need for a global strategy[J]. Journal of Pharmaceutical Sciences, 2016, 105(8):2278-2287.
doi: 10.1016/j.xphs.2016.06.002
[6] 刘叶, 杨悦. 我国抗生素滥用现状分析及建议[J]. 中国现代医生, 2016, 54(29):160-164.
LIU Ye, YANG Yue. The analysis and suggestion about antibiotics abuse in China[J]. China Modern Doctor, 2016, 54(29):160-164.
[7] 胡瑞武. 急诊内科抗生素应用的临床合理性及耐药性分析[J]. 中国处方药, 2019, 17(11):64-66.
HU Ruiwu. Analysis of clinical rationality and drug resistance of antibiotic application in emergency department[J]. Journal of China Prescription Drug, 2019, 17(11):64-66.
[8] 程锦泉, 刘少础. 超级细菌的警示与滥用抗生素潜在公共卫生问题[J]. 中国公共卫生, 2010, 26(12):1521-1522.
CHENG Jinquan, LIU Shaochu. Warnings about superbugs and potential public health problems with antibiotic overuse[J]. Chinese Journal of Public Health, 2010, 26(12):1521-1522.
[9] 许雪冉, 孙强, 阴佳, 等. 抗生素耐药性全球治理的发展历程及对中国的启示[J]. 中国卫生政策研究, 2019, 12(5):38-43.
XU Xueran, SUN Qiang, YIN Jia, et al. Policy evolution of China's antibiotic resistance governance and its enlightenment[J]. Chinese Journal of Health Policy, 2019, 12(5):38-43.
[10] 马超, 吴瑛. 抗菌剂抗菌机理简述[J]. 中国酿造, 2016, 35(1):5-9.
MA Chao, WU Ying. Research on antimicrobial agents and their mechanism of actions[J]. China Brewing, 2016, 35(1):5-9.
[11] 刘呈坤, 江志威, 毛雪, 等. 常见抗菌材料的研究进展[J]. 西安工程大学学报, 2020, 34(2):37-46.
LIU Chengkun, JIANG Zhiwei, MAO Xue, et al. Research progress of common antibacterial materials[J]. Journal of Xi'an Polytechnic University, 2020, 34(2):37-46.
[12] HAMBLIN, MICHAEL R. Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes[J]. Current Opinion in Microbiology, 2016, 33:67-73.
doi: 10.1016/j.mib.2016.06.008
[13] JORI G, MAGARAGGIA M, FABRIS C, et al. Photodynamic inactivation of microbial pathogens: disinfection of water and prevention of water-borne diseases[J]. Journal of Environmental Pathology Toxicology and Oncology, 2011, 30(3):261-271.
doi: 10.1615/JEnvironPatholToxicolOncol.v30.i3
[14] MAISCH T, SZEIMIES R M, LEHN N, et al. Antibacterial photodynamic therapy: a new treatment for superficial bacterial infections?[J]. Der Hautarzt, 2005, 56(11):1048-1055.
doi: 10.1007/s00105-005-0977-7
[15] 张权, 李深, 王清清, 等. 甲基丙烯酸甲酯/甲基丙烯酸共聚物光敏抗菌型纳米纤维膜的制备及其性能表征[J]. 纺织学报, 2017, 38(2):1-6.
ZHANG Quan, LI Shen, WANG Qingqing, et al. Preparation and characterization of photodynamic antimicrobial poly(methyl mecthacrylate-co-methacrylic acid)electrospun nanofibrous membrane[J]. Journal of Textile Research, 2017, 38(2):1-6.
doi: 10.1177/004051756803800101
[16] 赵占娟. 新型光敏抗菌药物的研究[D]. 北京: 北京协和医学院, 2014: 12-13.
ZHAO Zhanjuan. Novel photosensitizers as antimicrobial agents for photodynamic antimicrobial chemotherapy[D]. Beijing: Peking Union Medical College, 2014: 12-13.
[17] KHURANA R, KAKATKAR A S, CHATTERJEE S, et al. Supramolecular nanorods of (N-methylpyridyl) porphyrin with captisol: effective photosensitizer for anti-bacterial and anti-tumor activities[J]. Frontiers in Chemistry, 2019(7):452.
[18] 邹亮. 新型有机小分子光敏剂的设计、合成及其在光动力治疗中的应用研究[D]. 南京: 南京邮电大学, 2019: 16-17.
ZOU Liang. Design, synthesis and appliction of novel organic small molecular photosensitizer for photodynamic therapy[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019: 16-17.
[19] ALIOSMAN M, ANGELOV I, MITREV Y, et al. Novel Zn(II) phthalocyanine with tyrosine moieties for photodynamic therapy: synjournal and comparative study of light-associated properties[J]. Polyhedron, 2019, 162:121-128.
doi: 10.1016/j.poly.2019.01.029
[20] 吴世军. 多氟烷基硅(Ⅳ)酞菁-环糊精超分子光敏剂的构建及其光和药物控制释放[D]. 福州:福建师范大学, 2018: 2-4.
WU Shijun. Construction of nanosupramolecular systems based on polufluoro silicon(Ⅳ)phthalocyanine-cyclodextrin and its controlled releaseby light activation and drug competition[D]. Fuzhou: Fujian Normal University, 2018: 2-4.
[21] 林一勤. 两种不同光敏剂介导的光动力治疗对多重耐药鲍曼不动杆菌的体外抑制效果及作用机制研究[D]. 福州: 福建医科大学, 2018: 1-2.
LIN Yiqin. Studies of the inhibition effects and mechanisms of photodynamic therapy against multidrug-resistant Acinetobacter baumannii using two different photosensitizers in vito[D]. Fuzhou: Fujian Medical University, 2018: 1-2.
[22] 唐姝姝, 唐书泽, 李红爱, 等. 亚甲基蓝对大肠杆菌O157的光动力杀伤作用及机理[J]. 食品与发酵工业, 2012, 38(7):68-72.
TANG Shushu, TANG Shuze, LI Hongai, et al. Photodynamic killing of E. coli O157 by methylene blue and its mechanism[J]. Food and Fermentation Industries, 2012, 38(7):68-72.
[23] 刘晓珂. MB-PDT对牙本质小管内粪肠球菌生物膜影响的实验研究[D]. 郑州: 郑州大学, 2019: 1-5.
LIU Xiaoke. Effect of MB-PDT on enterococcus faecalis biofilm in dentinal tubules[D]. Zhengzhou: Zhengzhou University, 2019: 1-5.
[24] 蒋仁举. 血浆中病毒灭活的研究[D]. 成都: 四川大学, 2004: 2-3.
JIANG Renju. Study on virus inactivation of plasma[D]. Chengdu: Sichuan University, 2004: 2-3.
[25] 王飞, 王憬惺. 光化学方法灭活血液细胞成分中的病毒[J]. 中国输血杂志, 1999(4):3-5.
WANG Fei, WANG Jingxing. Photochemical methods inactivate viruses in blood cell components[J]. Chinese Journal of Blood Transfusion, 1999(4):3-5.
[26] 李悦悦, 林云萍, 林诗燕, 等. 孔雀绿, 福尔马林, 亚甲基蓝对河蟹离体胚胎真菌病防治效果的比较[J]. 水产科技情报, 1998(2):3-5.
LI Yueyue, LIN yunping, LIN Shiyan, et al. Prevention and treatment of fungus disease of in vitro embryo of mitten crab by using malachite green, formalin and methylene blue[J]. Aquatic Science and Technology Information, 1998(2):3-5.
[27] 郑薇, 陈勇军, 李颖倩, 等. 亚甲基蓝联合光动力疗法治疗黑色素瘤的机理研究[C]// 穆鑫. 合理用药及新药评价专题研讨会日程安排与论文摘要. 北京: 中国药理学会, 2010: 17-18.
ZHENG Wei, CHEN Yongjun, LI Yingqian, et al. Study on the mechanism of methylene blue combined with photodynamic therapy for melanoma[C]// MU Xin. Schedule and Abstract of the Symposium on Rational Drug Use and New Drug Evaluation. Beijing: Chinese Pharmacological Society, 2010: 17-18.
[28] 夏雨佳, 左维维, 王梦园, 等. 亚甲基蓝在胃肠道恶性肿瘤淋巴结检获中应用价值的Meta分析[J]. 临床外科杂志, 2020, 28(1):59-62.
XIA Yujia, ZUO Weiwei, WANG Mengyuan, et al. Application value of methylene blue in detection of lymph node in gastrointestinal malignant tumors: a Meta-analysis[J]. Journal of Clinical Surgery, 2020, 28(1):59-62.
[29] 李峥, 甄秀梅, 黄力毅, 等. 亚甲基蓝对白色念珠菌的光动力杀伤作用[J]. 广西医科大学学报, 2019, 36(4):555-558.
LI Zheng, ZHEN Xiumei, HUANG Liyi, et al. Photodynamic effects and mechanism of methylene blue on Candida albicans[J]. Journal of Guangxi Medical University, 2019, 36(4):555-558.
[30] 刘旭, 林江, 孟培松, 等. 光敏剂甲苯胺蓝在口腔颊粘膜渗透性的研究[J]. 现代生物医学进展, 2014, 14(27):5213-5216.
LIU Xu, LIN Jiang, MENG Peisong, et al. Fluorescence biodistribution of toluidine blue O on rat buccal mucosa[J]. Progress in Modern Biomedicine, 2014, 14(27):5213-5216.
[31] 张蕴韬, 王娜. 光动力疗法在口腔诊断和治疗中的应用[J]. 中国医学装备, 2010, 7(8):37-40.
ZHANG Yuntao, WANG Na. Application of photodynamic therapy in diagnosis and treatment of oral diseases[J]. China Medical Equipment, 2010, 7(8):37-40.
[32] 栾秀玲, 秦艳利, 白雪峰, 等. 甲苯胺蓝为光敏剂的光动力疗法对龈上菌斑灭菌效果的研究[J]. 牙体牙髓牙周病学杂志, 2008(2):94-97.
LUAN Xiuling, QIN Yanli, BAI Xuefeng, et al. Study of the effect of toluidine blue(TB)-mediated photodynamic inactivation to the periodontal pathogens from supragingival plaques[J]. Chinese Journal of Conservative Dentistry, 2008(2):94-97.
[33] 邱澄宇. 复方甲苯胺蓝介导的光动力疗法对金黄色葡萄球菌生物膜作用效果的研究[J]. 中国农村卫生, 2020, 12(8):37-38.
QIU Chengyu. Effect of compound toluidine blue mediated photodynamic therapy on staphylococcus aureus biofilms[J]. China Rural Health, 2020, 12(8):37-38.
[34] ARAÚJO PV, TEIXEIRA K, LANZA L D, et al. In vitro lethal photosensitization of S. mutans using methylene blue and toluidine blue O as photosensitizers[J]. Acta Odontol Latinoam, 2009, 22(2):93-97.
[35] 李喆. 红细胞悬浮液中用二甲基蓝灭活鸭乙型肝炎病毒[J]. 国外医学(输血及血液学分册), 2001(6):541.
LI Zhe. Duck hepatitis B virus(HBV)was inactivated by dimethyl blue in red blood cell suspension[J]. Foreign Medicine(Blood transfusion and Hematology), 2001(6):541.
[36] 李庆妮, 甄秀梅, 黄力毅, 等. 吩噻嗪类光敏剂介导的光动力抗菌疗法对体外白色念珠菌杀伤作用的研究[J]. 广西医科大学学报, 2016, 33(2):200-204.
LI Qingni, ZHEN Xiumei, HUANG Liyi, et al. Study on phenothiazine dyes-mediated photodynamic inactivation of candida albicans[J]. Journal of Guangxi Medical University, 2016, 33(2):200-204.
[37] RAGÀS X, DAI T, TEGOS G P, et al. Photodynamic inactivation of acinetobacter baumannii using phenothiazinium dyes: in vitro and in vivo studies[J]. Lasers in Surgery and Medicine, 2010, 42(5):384-390.
doi: 10.1002/lsm.v42:5
[38] 林以琳, 邱建清, 李世洋, 等. 核黄素介导的光动力技术的研究进展[J]. 食品工业科技, 2020, 41(6):332-337.
LIN Yilin, QIU Jianqing, LI Shiyang, et al. Research progress of riboflavin-mediated photodynamic technology[J]. Science and Technology of Food Industry, 2020, 41(6):332-337.
[39] 王莉, 张博, 黄宇闻, 等. 核黄素光化学法对人外周血淋巴细胞灭活作用的研究[J]. 中国输血杂志, 2012, 25(10):982-986.
WANG Li, ZHANG Bo, HUANG Yuwen, et al. Study on the inactivation of human peripheral blood lymphocytes using riboflavin photochemical treatment[J]. Chinese Journal of Blood Transfusion, 2012, 25(10):982-986.
[40] 周伟业. 核黄素光化学灭活血液中细菌的方法学及其机理研究[D]. 上海:华东师范大学, 2014: 1-71.
ZHOU Weiye. Study on the methodology and mechanism of riboflavin photochemical bacteria inactivation in blood[D]. Shanghai: East China Normal University, 2014: 1-71.
[41] 周盼, 谢小燕, 熊力, 等. 抗菌光敏剂的分类及研究进展[J]. 激光生物学报, 2017, 26(3):193-197.
ZHOU Pan, XIE Xiaoyan, XIONG Li, et al. The classification of antibacterial photosensitizer and its research progress[J]. Acta Laser Biology Sinica, 2017, 26(3):193-197.
[42] 熊鸿燕. 补骨脂素的光敏反应[J]. 中国消毒学杂志, 2002(4):31-35.
XIONG Hongyan. Photosensitive reaction of psoralen[J]. Chinese Journal of Toxicology, 2002(4):31-35.
[43] HELENA T L, LUIZ F M, MARIÉLLEN L, et al. Curcumin photodynamic effect in the treatment of the induced periodontitis in rats[J]. Lasers in Medical Science, 2017, 32(8):25-27.
[44] GAO J, MATTHEWS K R. Effects of the photosensitizer curcumin in inactivating foodborne pathogens on chicken skin[J]. Food Control, 2019.DOI: 10.1016/j.foodcont.2019.106959.
[45] 唐蕾, 诸葛健. 天然光敏剂的光动力抗菌作用[J]. 中国抗生素杂志, 2004(11):703-706.
TANG Lei, ZHUGE Jian. Photodynamic antimicrobial activity of natural photosensitizers[J]. Chinese Journal of Antibiotics, 2004(11):703-706.
[46] 杨珂, 赵耀明, 刘青山. 硬脂酸铁/聚丙烯共混纤维可控光降解性能的研究[J]. 产业用纺织品, 2006(8):30-33.
YANG Ke, ZHAO Yaoming, LIU Qingshan. Study on controlled photodegradation properties of ferric stearate/polypropylene blended fibers[J]. Technical Textiles, 2006(8):30-33.
[47] 蔡金正, 谭湖伟, 刘秉琦. 降解性塑料综述[J]. 长沙铁道学院学报, 1995(1):95-101.
CAI Jinzheng, TAN Huwei, LIU Bingqi. Review of degradable plastics[J]. Journal of Changsha Railway Institute, 1995(1):95-101.
[48] 王伟. 羊毛负载玫瑰红光敏剂的制备及性能研究[D]. 北京: 北京服装学院, 2012: 2-4.
WANG Wei. The study on the prepraration and properties of the rosevbengal-wool sensitizer[D]. Beijing: Beijing Institute of Fashion Technology, 2012: 2-4.
[49] 韩家宝, 潘崎江, 饶丽婷, 等. 双光敏剂负载P(MMA-co-MAA)纳米纤维膜的制备及其光动力抗菌性能研究[J]. 化工新型材料, 2019, 47(S1):36-40.
HAN Jiabao, PAN Qijiang, RAO Liting, et al. Preparation and photodynamic antimicrobial property of P(MMA-co-MAA)nanofibrous membrane loaded with double photosensitizers[J]. New Chemical Material, 2019, 47(S1):36-40.
[50] 黄明东, 陈锦灿, 陈卓, 等. 一种可用于光动力抗菌的纤维素材料及其制备方法: ZL201610117474.3[P]. 2017-05-10.
HUANG Mingdong, CHEN Jincan, CHEN Zhuo, et al. A cellulose material suitable for photodynamic antibacterial and its preparation method: ZL201610117474.3, 2017-05-10.
[51] 张权. 光动力抗菌型P(MMA-co-MAA)/MMT电纺纳米纤维的制备及表征[D]. 无锡: 江南大学, 2018: 5-9.
ZHANG Quan. Preparation and characterization of photodynamic antibacterial P(MMA-co-MAA)/MMT electrospun nanofibers[D]. Wuxi: Jiangnan University, 2018: 5-9.
[52] KROUIT M, GRANET R, BRANLAND P, et al. New photoantimicrobial films composed of porphyrinated lipophilic cellulose esters[J]. Bioorganic & Medicinal Chemistry Letters, 2006, 16(6):1651-1655.
doi: 10.1016/j.bmcl.2005.12.008
[53] 刘晓洪, 曾军河, 易长海, 等. 聚酯纤维光接枝丙烯酸聚合反应动力学研究[J]. 纺织学报, 2008, 29(1):1-4.
LIU Xiaohong, ZENG Junhe, YI Changhai, et al. Research on grafting kinetics of acrylic acid on polyester fiber under UV-light[J]. Journal of Textile Research, 2008, 29(1):1-4.
doi: 10.1177/004051755902900101
[54] 廖佩姿. 接枝改性制备抗菌纤维素无纺布的研究[D]. 成都: 西南交通大学, 2019: 7-8.
LIAO Peizi. Preparation of antibacterial cellulose non-woven fabric by graft modification[D]. Chengdu: Southwest Jiaotong University, 2019: 7-8.
[55] HENAO-HOLGUIN L V, CORNEJO-SANTIAGO E, ROJAS-MONTOYA I D, et al. MWCNT-riboflavin nanocomposite for collagen crosslinking: a green approach[J]. Materials Chemistry and Physics, 2019, 241:122361.
doi: 10.1016/j.matchemphys.2019.122361
[56] 熊杰, 许淑燕, 朱旭朝, 等. 提高超高分子量聚乙烯纤维抗蠕变性能的方法: ZL101538793[P]. 2009-09-23.
XIONG Jie, XU Shuyan, ZHU Xuchao, et al. Methods to improve the creep resistance of UHMWPE fibers: ZL101538793[P]. 2009-09-23.
[57] 薛洪峰. 基于CdSe/钴分子催化剂光阴极的光致产氢器件的研究[D]. 大连: 大连理工大学, 2015: 5-6.
XUE Hongfeng. Photocathodes modified by CdSe quantum dots and a molecular cobalt catalyst for photoinduced hydrogen evolution reaction[D]. Dalian: Dalian University of Technology, 2015: 5-6.
[1] JI Bolin, WANG Bijia, MAO Zhiping. Key technologies supporting low-carbon emissions in dyeing and finishing of textiles [J]. Journal of Textile Research, 2022, 43(01): 113-121.
[2] ZHANG Chao, JIANG Zhiming, ZHU Shaotong, ZHANG Chenxi, ZHU Ping. Application of hyperbranched phosphoramide in flame retardant finishing of viscose fabrics [J]. Journal of Textile Research, 2021, 42(07): 39-45.
[3] ZHANG Jiaojiao, LI Yuyang, LIU Yun, DONG Chaohong, ZHU Ping. Flame retardant and antibacterial treatments for cotton-viscose blended fabrics [J]. Journal of Textile Research, 2021, 42(07): 31-38.
[4] LUO Xiaolei, LI Ziyan, MA Ya'nan, LIU Lin, KRUCINSKA Izabella, YAO Juming. Progress in ecological flame retardant technology for textiles [J]. Journal of Textile Research, 2021, 42(05): 193-202.
[5] ZHANG Chentian, ZHAO Lianying, GU Xuefeng. Wearability of hollow coffee carbon polyester/cotton blended weft plain knitted fabric [J]. Journal of Textile Research, 2021, 42(03): 102-109.
[6] ZHOU Yingyu, WANG Rui, JIN Gaoling, WANG Wenqing. Research progress of applications of photo-induced surface modification technique in flame retardant fabrics [J]. Journal of Textile Research, 2021, 42(03): 181-189.
[7] DING Zihan, QIU Hua. Preparation and performance of nano-silica modified water-based polyurethane waterproof and moisture-permeable coated fabrics [J]. Journal of Textile Research, 2021, 42(03): 130-135.
[8] MENG Lingling, WEI Qufu, YAN Zhongjie, ZHONG Zhenzhen, WANG Xiaohui, SHEN Jiayu, CHEN Hongwei. Preparation and properties of Ag/ZnO composite film deposited polyester fabrics by magnetron sputtering [J]. Journal of Textile Research, 2021, 42(03): 143-148.
[9] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[10] ZHANG Yanyan, ZHAN Luyao, WANG Pei, GENG Junzhao, FU Feiya, LIU Xiangdong. Research progress in preparation of durable antibacterial cotton fabrics with inorganic nanoparticles [J]. Journal of Textile Research, 2020, 41(11): 174-180.
[11] CHEN Wendou, ZHANG Hui, CHEN Tianyu, WU Hailiang. Self-cleaning properties of titanium dioxide modified polyester/cotton blend fabrics [J]. Journal of Textile Research, 2020, 41(07): 122-128.
[12] WANG Tingting, LIU Liang, CAO Xiuming, WANG Qingqing. Preparation and photodynamic antimicrobial properties of hypocrellinpoly(methyl methacrylate-co-methacrylic acid) nanofibers [J]. Journal of Textile Research, 2020, 41(05): 1-7.
[13] CHANG Shuo, SHEN Jiajia. Research progress of graphene durable finishing of textiles [J]. Journal of Textile Research, 2020, 41(02): 179-186.
[14] XU Lin, REN Yu, ZHANG Hongyang, WU Shuangquan, LI Ya, DING Zhirong, JIANG Wenwen, XU Sijun, ZANG Chuanfeng. Construction and properties of superhydrophobic layer of titania/fluorosilane on polyester fabric surface [J]. Journal of Textile Research, 2019, 40(12): 86-92.
[15] . Preparationof porphyrin grafted bacterial cellulose and photodynamic antimicrobial property thereof [J]. Journal of Textile Research, 2018, 39(11): 20-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(03): 7 -8 .
[9] PAN Xu-wei;GU Xin-jian;HAN Yong-sheng;CHENG Yao-dong. Research on quick response of apparel supply chain for collaboration[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 54 -57 .
[10] HUANG Xiao-hua;SHEN Ding-quan. Degumming and dyeing of pineapple leaf fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 75 -77 .