Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (12): 55-62.doi: 10.13475/j.fzxb.20200904608

• Textile Engineering • Previous Articles     Next Articles

Method for data tracing based on Elasticsearch during spinning production

WANG Bobo1,2, ZHENG Xiaohu2,3(), SHEN Xingwang1, BAO Jinsong1, LIU Tianyuan1   

  1. 1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
    2. Institute of Artificial Intelligence, Donghua University, Shanghai 201620, China
    3. Research Center of Shanghai Industrial Big Data and Intelligent System, Shanghai 201620, China
  • Received:2020-09-18 Revised:2021-09-24 Online:2021-12-15 Published:2021-12-29
  • Contact: ZHENG Xiaohu E-mail:xhzheng@dhu.edu.cn

Abstract:

In order to achieve digital management and data traceability of the entire spinning production process, a method based on Elasticsearch for data tracing during spinning production was proposed. Targeting at the improvement of data traceability, this method took into account the entire process of spinning production and digitalization of the existing manual identification system stored in a standardized manner. At the same time, a two-way tracing method was established and a reasonable tracing fusion path was designed for the improvement of the data tracing performance. The experimental results show that the method offers better storage stability, and the tracing speed when using the proposed method is 1.6 and 1.2 times faster than that of the MySQL and SQL Server implementation method. In terms of data management and fusion, the proposed method is more flexible and scalable. This method has obvious application value in improving the traceability of spinning production.

Key words: Elasticsearch, spinning production, data tracing, quality tracing, data storage, data fusion

CLC Number: 

  • TS111.9

Fig.1

Realistic problems of quality tracing in spinning production"

Fig.2

Sequence diagram of spinning production process"

Fig.3

Schematic diagram of data relevance in spinning production"

Fig.4

Framework of data traceing based on Elasticsearch for spinning production"

Fig.5

Schematic diagram of forward tracing of spinning production data"

Fig.6

Tracking diagram of spinning production data"

Fig.7

Schematic diagram of backward tracing of spinning production data"

Fig.8

Schematic diagram of data fusion of spinning production"

Fig.9

Road map of data fusion for spinning production"

Tab.1

Memory occupancy table of original spinning dataMB"

数据个数 MySQL CSV Elasticsearch SQL Server
1 0.016 0.000 4 0.025 6 0.016
10 0.016 0.003 8 0.029 1 0.016
100 0.064 0.038 2 0.136 2 0.048
1 000 0.228 0.386 2 0.575 3 0.336
10 000 2.500 3.900 0 5.100 0 3.100
100 000 26.600 38.900 0 46.500 0 31.400

Fig.10

Memory usage of marked spinning data"

Fig.11

Data tracing time varies with number of labels added in single process"

Fig.12

Data tracing time varies with number of labels added in multi-process"

Fig.13

Chart of data fusion results"

[1] 刘笑莹, 方斌, 朱守艾, 等. 棉/大麻纤维混纺低损耗工艺优化[J]. 纺织学报, 2017, 38(1):35-39.
LIU Xiaoying, FANG Bin, ZHU Shouai, et al. Low-loss optimization of cotton/hemp blending process[J]. Journal of Textile Research, 2017, 38(1):35-39.
[2] 万由顺, 卫江, 桂长明, 等. 全流程智能化纺纱技术创新点及应用效果[J]. 棉纺织技术, 2020, 48(1):28-33.
WAN Youshun, WEI Jiang, GUI Changming, et al. Innovation point and application effect of whole process intelligent spinning technology[J]. Cotton Textile Technology, 2020, 48(1):28-33.
[3] 崔士涛. 利用生产在线信息系统提升纱线质量的实践[J]. 棉纺织技术, 2019, 47(6):67-72.
CUI Shitao. Practice of improving yarn quality by production online information system[J]. Cotton Textile Technology, 2019, 47(6):67-72.
[4] 薛建昌. 棉纺织企业智能化提升方案与应用探讨[J]. 棉纺织技术, 2017, 45(8):1-9.
XUE Jianchang. Improvement scheme and application discussion for the intelligentization in cotton textile enterprise[J]. Cotton Textile Technology, 2017, 45(8):1-9.
[5] AGRAWAL T K, KUMAR V, PAL R, et al. Blockchain-based framework for supply chain traceability: a case example of textile and clothing industry[J]. Computers & Industrial Engineering, 2021. DOI: 10.1016/j.cie.2021.107130.
doi: 10.1016/j.cie.2021.107130
[6] AGRAWAL T K, KOEHL L, CAMPAGNE C. A secured tag for implementation of traceability in textile and clothing supply chain[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99(9):2563-2577.
doi: 10.1007/s00170-018-2638-x
[7] AGRAWAL T K, KOEHL L, CAMPAGNE C. Implementing traceability using particle randomness-based textile printed tags[J]. IOP Conference Series: Materials Science and Engineering, 2017.DOI: 10.1088/1757-899X/254/7/072001.
doi: 10.1088/1757-899X/254/7/072001
[8] FERNANDEZ-CARAMES T M, FRAGA-LAMAS P. A review on human-centered IoT-connected smart labels for the industry 4.0[J]. IEEE Access, 2018, 6:25939-25957.
doi: 10.1109/Access.6287639
[9] JALONEN T, LAAKOM F, GABBOUJ M, et al. Visual product tracking system using siamese neural net-works[J]. IEEE Access, 2021. DOI: 10.1109/ACCESS.2021.3082934.
doi: 10.1109/ACCESS.2021.3082934
[10] 汪松松, 彭来湖, 沈春娅, 等. 针织装备云平台的构建技术[J]. 纺织学报, 2018, 39(10):149-155.
WANG Songsong, PENG Laihu, SHEN Chunya, et al. Construction technology of knitting equipment networking cloud platform[J]. Journal of Textile Research, 2018, 39(10):149-155.
[11] 李传根. Elasticsearch数据存储策略研究[D]. 重庆:重庆邮电大学, 2019:1-32.
LI Chuangen. Research on data storage strategy of Elasticsearch[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2019:1-32.
[12] 胡鑫, 姚宇, 徐英杰. 基于Elasticsearch的TEE病例库检索系统设计与实现[J]. 计算机应用, 2018, 38(S1):91-94.
HU Xin, YAO Yu, XU Yingjie. Design and implementation of electronic medical record system of transesophageal echocardiography based on Elastic-search[J]. Journal of Computer Applications, 2018, 38(S1):91-94.
[13] 李敏波, 许鑫星, 李强, 等. 基于JSON文档结构的工业大数据多维分析方法[J]. 中国机械工程, 2020, 31(14):1700-1707,1716.
LI Minbo, XU Xinxing, LI Qiang, et al. Multi-dimensional analysis method of industrial big data based on JSON document structure[J]. China Mechanical Engineering, 2020, 31(14):1700-1707,1716.
[14] 刘志伟, 邢永旭, 于澔, 等. 企业级海量代码的检索与管理技术[J]. 软件学报, 2019, 30(5):1498-1509.
LIU Zhiwei, XING Yongxu, YU Hao, et al. Retrieval and management technology for industrial-scale massive code[J]. Journal of Software, 2019, 30(5):1498-1509.
[15] 汪小寒, 韩慧慧, 张泽培, 等. 树索引数据差分隐私预算分配方法[J]. 计算机应用, 2018, 38(7):1960-1966.
WANG Xiaohan, HAN Huihui, ZHANG Zepei, et al. Differential privacy budget allocation method for data of tree index[J]. Journal of Computer Applications, 2018, 38(7):1960-1966.
[1] REN Weijia, DU Yuhong, ZUO Hengli, YUAN Ruwang. Research progress in image segmentation and edge detection methods for alien fibers detection in cotton [J]. Journal of Textile Research, 2021, 42(12): 196-204.
[2] HOU Wenshuang, MIN Jie, JI Feng, ZHANG Jianxiang, SU Meng, HE Ruixian. Influence of fabric tightness and anti-crease finishing on wrinkle recovery of pure cotton woven fabrics [J]. Journal of Textile Research, 2021, 42(01): 118-124.
[3] ZENG Yuhui, ZHANG Tingting, WANG Kezuo, HE Li, CHEN Yiren. Influence factors of color stability in finishing of natural colored cotton [J]. Journal of Textile Research, 2020, 41(08): 45-49.
[4] DONG Chaoqun, DU Yuhong, REN Weijia, ZHAO Di. Research progress in optical imaging technology for detecting foreign fibers in cotton [J]. Journal of Textile Research, 2020, 41(06): 183-189.
[5] ZHA Liugen, XIE Chunping. Prediction of cotton yarn quality based on four-layer BP neural network [J]. Journal of Textile Research, 2019, 40(01): 52-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 119 -120 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(03): 9 -10 .
[10] PAN Xu-wei;GU Xin-jian;HAN Yong-sheng;CHENG Yao-dong. Research on quick response of apparel supply chain for collaboration[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 54 -57 .