Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (08): 49-56.doi: 10.13475/j.fzxb.20200904808

• Fiber Materials • Previous Articles     Next Articles

Preparation and energy storage properties of polyacrylonitrile-based Si/C/carbon nanotube composite carbon nanofiber membrane

ZHANG Yaru1,2, HU Yi1,2(), CHENG Zhongling1,2, XU Shilin1,2   

  1. 1. Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education,Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2020-09-21 Revised:2021-05-01 Online:2021-08-15 Published:2021-08-24
  • Contact: HU Yi E-mail:huyi-v@zstu.edu.cn

Abstract:

In order to overcome volume expansion in energy storage process of silicon materials, electrospinning technology was used to prepare polyacrylonitrile (PAN)/Si/Fe composite nano-fiber(NFs) membrane, which was deposited on the composite NFs by chemical vapor deposition method for growth of carbon nanotubes (CNTs). Carbonization took place afterwards at 800 ℃ to obtain PAN-based Si/C/CNTs composite carbon nanofiber(CNFs)membrane. The structure and properties of composite CNFs membrane were characterized by scanning electron microscope, transmission electron microscope, X-ray diffractometer and thermogravimetric analyzer. The fabricated membrane was used in the negative electrode of lithium ions battery, and the corresponding electrochemical performance test was carried out. The results show that with the catalyst of 15% FeSO4 (compared to PAN) in spinning solution, a unique caterpillar structure composite CNFs membrane appears which effectively improves the electrochemical performance of the battery. It has an initial specific discharge capacity of 2 067.9 mA·h/g, and it still maintains a specific discharge capacity of 851.2 mA·h/g after 400 cycles, with a capacity decay rate per cycle being only 0.15%.

Key words: electrospinning, chemical vapor deposition method, carbon nanotube, composite carbon nanofiber, energy storage performance

CLC Number: 

  • TQ340.64

Fig.1

SEM images of composite CNFs membrane with different mass fraction of FeSO4"

Fig.2

SEM images of composite CNFs membrane prepared with different types of iron salts. (a) 15% FeCl2; (b) 15% ferrocene"

Fig.3

TEM images of Si/C/CNT composite CNFs membrane at low(a)and high(b)power"

Fig.4

Raman spectra of composite CNFs membrane"

Fig.5

SEM image(a) and C(b), O(c), Si(d) and Fe(e) element distribution images of Si/C/CNT composite CNFs membrane"

Fig.6

XPS spectra of Si/C/CNTs composite CNFs membrane. (a) XPS total spectrum; (b) C1s spectrum; (c) O1s spectrum"

Fig.7

Nitrogen desorption/adsorption isotherm curve(a) and pore size distribution curve(b) for composite CNFs membrane"

Fig.8

TG curve of Si/C/CNTs composite CNFs membrane"

Fig.9

XRD pattern of Si/C/CNTs composite CNFs membrane"

Fig.10

Electrochemical performance curves of composite CNFs membrane anode lithium ion battery.(a)Charge-discharge curve;(b)Cycle voltammetry curves;(c)Nyquist curves;(d)Comparison of discharge capacity of lithium ion battery"

[1] 李靓晗, 简现龙, 张森, 等. 柔性自支撑CNT/Si复合薄膜的制备及储能性能[J]. 化工学报, 2020, 71(6):2804-2810.
LI Lianghan, JIAN Xianlong, ZHANG Sen, et al. Preparation and energy storage performance of flexible and self-supporting CNT/Si composite film[J]. CIESC Journal, 2020, 71(6):2804-2810.
[2] 胡倩倩, 长世勇, 张灵志, 等. 一种分散在多孔碳上的碳包覆硅负极的制备及应用[J]. 新能源进展, 2020, 8(2):131-135.
HU Qianqian, CHANG Shiyong, ZHANG Lingzhi, et al. Preparation and application of a carbon-coated silicon anode dispersed on porous carbon[J]. New Energy Development, 2020, 8(2):131-135.
[3] LIN H, CHEN Y, JIANG B, et al. Hollow-structure engineering of a silicon-carbon anode for ultra-stable lithium-ion batteries[J]. Dalton Transactions, 2020, 49(17):5669-5676.
doi: 10.1039/D0DT00566E
[4] 周军华, 罗飞, 褚赓, 等. 锂离子电池纳米硅碳负极材料研究进展[J]. 储能科学与技术, 2020, 9(2):569-582.
ZHOU Junhua, LUO Fei, CHU Geng, et al. Research progress of nano-silicon-carbon anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(2):569-582.
[5] 肖钰, 梁晓杜, 廖丽霞, 等. 锂离子电池硅负极材料性能改进的研究进展[J]. 化工新型材料, 2020, 48(4):1-4.
XIAO Yu, LIANG Xiaodu, LIAO Lixia, et al. Research progress in performance improvement of silicon anode materials for lithium ions battery[J]. New Chemical Materials, 2020, 48(4):1-4.
[6] 孟奇, 周思源, 李坤, 等. 喷雾干燥法构建硅/碳复合材料及其电化学性能研究[J]. 广州化工, 2019, 47(21):32-36.
MENG Qi, ZHOU Siyuan, LI Kun, et al. Spray drying method to construct silicon/carbon composite and its electrochemical performance[J]. Guangzhou Chemical Industry, 2019, 47(21):32-36.
[7] 杨乐之, 殷敖, 刘志宽, 等. 锂离子电池硅碳负极材料的结构设计研究进展[J]. 矿冶工程, 2019, 39(4):140-144.
YANG Lezhi, YIN Ao, LIU Zhikuan, et al. Structural design research progress of silicon carbon anode materials for lithium-ion batteries[J]. Mining and Metallurgical Engineering, 2019, 39(4):140-144.
[8] 戴剑锋, 朱晓军, 刘骥飞, 等. 硅基锂离子电池负极材料的容量衰减及改进研究[J]. 化工新型材料, 2019, 47(5):222-226.
DAI Jianfeng, ZHU Xiaojun, LIU Jifei, et al. Study on the capacity attenuation and improvement of silicon-based lithium ions battery anode materials[J]. New Chemical Materials, 2019, 47(5):222-226.
[9] 潘雨默, 牛峥, 陈祥祯, 等. 锂离子电池硅基负极材料的研究进展[J]. 电池工业, 2019, 23(2):92-100.
PAN Yumo, NIU Zheng, CHEN Xiangzhen, et al. Research progress on silicon-based anode materials for lithium-ion batteries[J]. Battery Industry, 2019, 23(2):92-100.
[10] 赵云, 亢玉琼, 金玉红, 等. 锂离子电池硅基负极及其相关材料[J]. 化学进展, 2019, 31(4):613-630.
doi: 10.7536/PC180916
ZHAO Yun, KANG Yuqiong, JIN Yuhong, et al. Silicon-based anode and related materials for lithium ion batteries[J]. Progress in Chemistry, 2019, 31(4):613-630.
[11] 方锐, 李子坤, 周豪杰, 等. 锂离子电池用硅基负极材料研究进展[J]. 炭素技术, 2021, 40(2):1-5.
FANG Rui, LI Zikun, ZHOU Haojie, et al. Research progress of silicon-based anode materials for lithium-ion batteries[J]. Carbon Technology, 2021, 40(2):1-5.
[12] 侯佼, 侯春平, 孟令桐, 等. 锂离子电池硅基负极材料的研究进展[J]. 炭素技术, 2020, 39(6):1-20.
HOU Jiao, HOU Chunping, MENG Lingtong, et al. Research progress of silicon-based anode materials for lithium-ion batteries[J]. Carbon Technology, 2020, 39(6):1-20.
[13] 余晨露, 田晓华, 张哲娟, 等. 锂离子电池硅基负极比容量提升的研究进展[J]. 储能科学与技术, 2020, 9(6):1614-1628.
YU Chenlu, TIAN Xiaohua, ZHANG Zhejuan, et al. Research progress in increasing the specific capacity of silicon-based anodes for lithium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(6):1614-1628.
[14] 石晓飞, 姜沁源, 李润, 等. 碳纳米管水平阵列的结构控制生长:进展与展望[J]. 化工学报, 2021, 72(1):86-115.
SHI Xiaofei, JIANG Qinyuan, LI Run, et al. Structure-controlled growth of carbon nanotube horizontal arrays: progress and prospects[J]. CIESC Journal, 2021, 72(1):86-115.
[15] LIU H, CHEN Y, JIANG B, et al. Hollow-structure engineering of a silicon-carbon anode for ultra-stable lithium-ion batteries[J]. Dalton Transactions, 2020, 49(17):5669-5676.
doi: 10.1039/D0DT00566E
[16] YIN A, YANG L, ZHUANG Z, et al. A novel silicon graphite composite material with core-shell structure as an anode for lithium-ion batteries[J]. Energy Storage, 2020, 2(4):1-14.
[17] 李春晓. 锂离子电池负极材料研究进展[J]. 新材料产业, 2017(9):27-33.
LI Chunxiao. Research progress of anode materials for lithium-ion batteries[J]. New Material Industry, 2017(9):27-33.
[18] 曹伟, 宋雪梅, 王波, 等. 碳纳米管的研究进展[J]. 材料导报, 2007, 21(8):77-83.
CAO Wei, SONG Xuemei, WANG Bo, et al. Research progress of carbon nanotubes[J]. Materials Reports, 2007, 21(8):77-83.
[19] GIVARGIZONVE I. Fundamental aspects of VLS growth[J]. Journal of Crystal Growth, 1975, 31:20-30.
doi: 10.1016/0022-0248(75)90105-0
[20] 王飞雪, 张永刚, 陈友氾. 碳纤维多尺度增强体的研究进展[J]. 高科技纤维与应用, 2013, 38(5):40-46.
WANG Feixue, ZHANG Yonggang, CHEN Youpan. Research progress of carbon fiber multi-scale rein-forcers[J]. High-tech Fiber & Application, 2013, 38(5):40-46.
[21] 赵悠曼, 严小波, 段红坤. 碳纳米管导电剂对硅碳负极锂离子电池性能提升的探索[J]. 储能科学与技术, 2021, 10(1):118-127.
ZHAO Youman, YAN Xiaobo, DUAN Hongkun. Exploration of carbon nanotube conductor for improving the performance of SiC negative lithium-ion battery[J]. Energy Storage Science and Technology, 2021, 10(1):118-127.
[22] 刘晋捷, 李克, 李彦博. 多孔SiOx/C/CNTs高性能锂离子负极复合材料[J]. 电源技术, 2020, 44(12):1725-1728.
LIU Jinjie, LI Ke, LI Yanbo. Porous SiOx/C/CNTs lithium-ion anode composites with high perfor-mance[J]. Power Supply Technology, 2020, 44(12):1725-1728.
[23] WANG H, FU J, WANG C, et al. A binder-free high silicon content flexible anode for Li-ion batteries[J]. Energy Environ Sci, 2020, 13(1):848-858.
doi: 10.1039/C9EE02615K
[1] YAN Tao, PAN Zhijuan. Strain sensing performance for thin and aligned carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(07): 62-68.
[2] YANG Zhi, LIU Chengkun, WU Hong, MAO Xue. Preparation and characterization of lignin/polyacrylonitrile-based carbon fibers [J]. Journal of Textile Research, 2021, 42(07): 54-61.
[3] GUO Fengyun, GUO Ziyi, GAO Lei, ZHENG Linjing. Preparation and properties of thermal bonded fibrous artificial blood vessels [J]. Journal of Textile Research, 2021, 42(06): 46-50.
[4] DAI Yang, YANG Nannan, XIAO Yuan. Preparation and properties of resistive flexible humidity sensors using electrospun carbon nanotubes [J]. Journal of Textile Research, 2021, 42(06): 51-56.
[5] CHEN Yu, XIA Xin. Preparation and electrochemical properties of liquid GaSn self-repairing anode materials for lithium-ion batteries [J]. Journal of Textile Research, 2021, 42(06): 57-62.
[6] TANG Jian, YAN Tao, PAN Zhijuan. Research progress of flexible strain sensors based on conductive composite fibers [J]. Journal of Textile Research, 2021, 42(05): 168-177.
[7] ZHANG Beilei, SHEN Mingwu, SHI Xiangyang. Preparation and biomedical applications of electrospun short fibers [J]. Journal of Textile Research, 2021, 42(05): 1-8.
[8] WANG Lu, HAN Xue, LOU Lin, HE Linghua, ZHOU Xiaohong. Development of electric-heating protective gloves and ergonomic experiments under extreme cold environment [J]. Journal of Textile Research, 2021, 42(05): 150-154.
[9] ZHU Zhexin, MA Xiaoji, XIA Lin, LÜ Wangyang, CHEN Wenxing. Photocatalytic performance of iron hexadecachlorophthalocyanine/ polyacrylonitrile composite nanofibers synergistically enhanced by chloride ion [J]. Journal of Textile Research, 2021, 42(05): 9-15.
[10] ZHANG Lin, LI Zhicheng, ZHENG Qinyuan, DONG Jun, ZHANG Yin. Preparation and performance of flexible and anisotropic strain sensor based on electrospinning [J]. Journal of Textile Research, 2021, 42(05): 38-45.
[11] YU Meiqiong, YUAN Hongmei, CHEN Lihui. Rheological properties of cellulose/LiCl/ N, N-dimethylacetamide solution [J]. Journal of Textile Research, 2021, 42(05): 23-30.
[12] ZHAO Xinzhe, WANG Shaoxia, GAO Jing, WANG Lu. Preparation and properties of electrospun collagen/polyethylene oxide nanofiber membranes [J]. Journal of Textile Research, 2021, 42(04): 33-41.
[13] ZHANG Runke, LÜ Wangyang, CHEN Wenxing. Preparation and electrochemical properties of carbon fiber fabric sensors co-modified by cobalt phthalocyanine and carbon nanotubes [J]. Journal of Textile Research, 2021, 42(04): 121-126.
[14] CHENG Yue, AN Qi, LI Dawei, FU Yijun, ZHANG Wei, ZHANG Yu. Preparation of SiO2 in-situ doped polyvinylidene fluoride nanofiber membrane and its properties [J]. Journal of Textile Research, 2021, 42(03): 71-76.
[15] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and piezoelectric properties of carbon nanotubes/polyvinylidene fluoride nanofiber membrane [J]. Journal of Textile Research, 2021, 42(03): 44-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!