Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (11): 56-63.doi: 10.13475/j.fzxb.20200905009

• Textile Engineering • Previous Articles     Next Articles

Ballistic impact tests and numerical simulation of aramid fabric and containment ring

MOU Haolei1,2, XIE Jiang2, PEI Hui2, FENG Zhenyu2, GENG Hongzhang1()   

  1. 1. School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
    2. College of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China
  • Received:2020-09-21 Revised:2021-07-22 Online:2021-11-15 Published:2021-11-29
  • Contact: GENG Hongzhang E-mail:genghz@tiangong.edu.cn

Abstract:

To investigate the ballistic impact response characteristics of aramid fabric and its containment ring, the mechanical properties of the aramid fabric were obtained by conducting the quasi-static and dynamic tensile tests, and the impact performance of the aramid fabric plate and its containment ring were determined by conducting the ballistic impact tests. The numerical multi-layer shell models were built and verified using the test results. The research results show that the strain rate has a significant effect on the mechanical properties of the aramid fabric.For the fabric ballistic impact tests, the energy absorption of the aramid fabric is related to the failure mode, and there are obvious boundary effects. For the ballistic impact tests on the containment ring, the energy is dissipated mainly through the yarn strain energy, the yarn breakage and the interaction between yarns. At the same incident velocities, the smaller is the number of layers, the less energy is absorbed. When the number of fabric layers increases, the more energy is absorbed, but the increment of energy absorption decreases. The multi-layer shell models can well reproduce the ballistic impact process, and the simulated failure morphology, the residual velocity of projectile, and the absorbed energy percent difference are close to the test results, which can effectively verify the multi-layer shell models.

Key words: aramid fabric, containment ring, ballistic impact, failure mode, response characteristic, numerical simulation

CLC Number: 

  • V231.91

Fig.1

Typical quasi-static tensile process"

Fig.2

Quasi-static tensile stress-strain curves. (a) Warp direction; (b) Weft direction"

Fig.3

Dynamic tensile stress-strain curves"

Tab.1

Ballistic impact test results"

实验
编号
弹体
质量/g
层数 入射速度/
(m·s-1)
剩余速度/
(m·s-1)
ΔE/% V50/
(m·s-1)
结果
1# 175.9 2 137.4 130.40 9.93 43.3 穿透
2# 175.9 4 129.8 106.00 33.30 74.9 穿透
3# 175.6 6 133.8 85.80 58.90 102.6 穿透
4# 175.9 8 131.8 0 100.00 未穿透
5# 176.0 6 103.0 0 100.00 未穿透
6# 175.5 6 122.0 22.27 96.70 119.9 穿透
7# 174.3 6 152.4 103.80 53.60 111.6 穿透

Fig.4

Ballistic impact process of 6#. (a) Lengthening; (b) Penetration; (c) After impact"

Fig.5

Winding machine and containment ring. (a) Winding machine; (b) Containment ring; (c) Schematic diagram"

Tab.2

Ballistic impact test results of containment ring"

实验
编号
弹体
质量/g
层数 入射速度/
(m·s-1)
剩余速度/
(m·s-1)
ΔE/% V50/
(m·s-1)
结果
1* 175.4 2 140.0 115.0 32.5 79.8 穿透
2* 175.4 4 140.4 84.5 63.8 111.6 穿透
3* 175.6 6 141.4 42.7 90.9 134.8 穿透
4* 175.7 8 140.8 0 100.0 未穿透
5* 175.4 6 119.3 0 100.0 未穿透
6* 175.9 6 131.1 22.1 97.2 129.2 穿透
7* 175.7 6 146.2 66.9 78.8 130.0 穿透

Fig.6

Impact process of test"

Fig.7

Fabric deformation and damage"

Fig.8

Analysis of energy absorption. (a) Different fabric layers; (b) Incident velocities and residual velocities; (c) Different kinetic energy"

Fig.9

Finite element model of containment ring"

Fig.10

Simulation of non-contained process (a) and contained process (b)"

Fig.11

Comparison of damage morphology"

Fig.12

Fabric energy absorption-time curve"

Tab.3

Comparison of ballistic impact simulation and test results of fabrics"

实验
编号
层数 入射速度/
(m·s-1)
剩余速度/(m·s-1) 吸能比率/%
实验 仿真 实验 仿真 差值
1* 2 137.4 130.40 121.0 9.93 22.4 -12.47
2* 4 129.8 106.00 112.0 33.30 25.5 7.80
3* 6 133.8 85.80 71.6 58.90 71.4 -12.50
4* 8 131.8 0 0 100.00 100.0 0
5* 6 122.0 22.27 60.9 96.70 75.0 21.70
6* 6 152.4 103.80 98.5 53.60 58.2 -4.60

Fig.13

Simulation results of 3*"

Fig.14

Projectile velocity-time curve of 3*"

Fig.15

Simulation results of 4*"

Fig.16

Simulation projective velocity-time curve of 4*"

Tab.4

Comparison of impact simulation and test results of aramid fabric containment ring"

实验
编号
入射速度/
(m·s-1)
剩余速度/(m·s-1) 吸能比率/%
实验 仿真 实验 仿真 差值
1* 140.0 115.0 110.2 32.5 38.4 -5.9
2* 140.4 84.5 88.2 63.8 60.5 3.3
3* 141.4 42.7 43.4 90.8 90.6 0.2
4* 140.8 0 -21.6 100.0 97.6 2.4
5* 119.3 0 0 100.0 100.0 0
6* 131.1 22.1 20.3 97.2 97.6 -0.4
7* 146.2 66.9 70.9 79.1 76.5 2.6
[1] SINHA S K, DORBALA S. Dynamic loads in the fan containment structure of a turbofan engine[J]. Journal of Aerospace Engineering, 2009, 22(3):260-269.
doi: 10.1061/(ASCE)0893-1321(2009)22:3(260)
[2] HORIBE K, KAWAHIRA K, SAKAI J, et al. Development of GE90-115B turbofan engine[J]. Ihi Engineering Review, 2004, 37(1):1-8.
[3] 宣海军, 陆晓, 洪伟荣, 等. 航空发动机机匣包容性研究综述[J]. 航空动力学报, 2010, 25(8):1860-1870.
XUAN Haijun, LU Xiao, HONG Weirong, et al. Review of aeroengine case containment research[J]. Journal of Aerospace Power, 2010, 25(8):1860-1870.
[4] GERSTLE J H. Analysis of rotor fragment impact on ballistic fabric engine burst containment shields[J]. Journal of Aircraft, 2012, 12(4):388-393.
doi: 10.2514/3.44461
[5] GOPINATH G, BATRA R C. Prediction of elastic moduli and ultimate strength of fiber/yarn-reinforced elastic-plastic matrix using Fourier series approach and cuboidal/wedge sub-volumes[J]. International Tournail of Non-linear Mechanics, 2020, 125:1-16.
[6] CHEN J L, WEN X J, SHAO Y W, et al. Highly stretchable, stability, flexible yarn-fabric-based multi-scale negative Poisson's ratio composites[J]. Composite Structures, 2020, 250:1-9.
[7] LIU T, SUN B Z, GU B H. Effects of yarn defects and specimen size on impact compressive damages of 3-D angle interlock woven composites[J]. International Journal of Damage Mechanics, 2017, 27(9):1380-1396.
doi: 10.1177/1056789517733123
[8] 赵磊, 刘元坤, 刘华, 等. 三维机织增强复合材料弹道冲击边缘部分有限元分析[J]. 纺织学报, 2016, 37(5):68-74.
ZHAO Lei, LIU Yuankun, LIU Hua, et al. Finite element analysis on ballistic impact edge part of three-dimensional woven fabric reinforced composite[J]. Journal of Textile Research, 2016, 37(5):68-74.
[9] PASQUALI M, GAUDENZI P. Effects of curvature on high-velocity impact resistance of thin woven fabric composite targets[J]. Composite Structures, 2017, 160:349-365.
doi: 10.1016/j.compstruct.2016.10.069
[10] 武鲜艳, 申屠宝卿, 马倩, 等. 球形弹体冲击下三维正交机织物结构破坏机制有限元分析[J]. 纺织学报, 2020, 41(8):32-38.
WU Xianyan, SHENTU Baoqing, MA Qian, et al. Finite element analysis on structural failure mechanism of three-dimensional orthogonal woven fabrics subjected to impact of spherical projectile[J]. Journal of Textile Research, 2020, 41(8):32-38.
doi: 10.1177/004051757104100106
[11] BANDARU A K, PATEL S, SACHAN Y, et al. Low velocity impact response of 3D angle-interlock Kevlar/basalt reinforced polypropylene composites[J]. Materials and Design, 2016, 105:323-332.
doi: 10.1016/j.matdes.2016.05.075
[12] 王文莎, 阎建华, 顾海麟. 二维三轴向编织混杂层合复合材料的冲击性能[J]. 纺织学报, 2015, 36(10):54-61.
WANG Wensha, YAN Jianhua, GU Hailin. Investigation on impact properties of 2-D triaxial braided-hybrid laminated composites[J]. Journal of Textile Research, 2015, 36(10):54-61.
[13] 练军, 顾伯洪, 王善元. 织物及其复合材料的弹道冲击性能[J]. 纺织学报, 2006, 27(8):109-112.
LIAN Jun, GU Bohong, WANG Shanyuan. Ballistic impact properties of the fabric and its composite laminates[J]. Journal of Textile Research, 2006, 27(8):109-112.
[14] WANG H, HAZELL P J, SHANKAR K, et al. Effects of fabric folding and thickness on the impact behaviour of multi-ply UHMWPE woven fabrics[J]. Journal of Materials Science, 2017, 52(24):13977-13991.
doi: 10.1007/s10853-017-1482-y
[15] WANG H, HAZELL P J, SHANKAR K, et al. Impact behaviour of Dyneema® fabric-reinforced composites with different resin matrices[J]. Polymer Testing, 2017, 61:17-26.
doi: 10.1016/j.polymertesting.2017.04.026
[16] TAPIE E, TAN E S L, GUO Y B, et al. Effects of pre-tension and impact angle on penetration resistance of woven fabric[J]. International Journal of Impact Engineering, 2017, 106:171-190.
doi: 10.1016/j.ijimpeng.2017.03.022
[17] SHARDA J, DEENADAYALU C, MOBASHER B, et al. Modeling of multilayer composite fabrics for gas turbine[J]. Journal of Aerospace Engineering, 2006, 19(1):38-45.
doi: 10.1061/(ASCE)0893-1321(2006)19:1(38)
[18] BANSAL S, MOBASHER B, RAJAN S D. Development of fabric constitutive behavior for use in modeling engine fan blade-out events[J]. Journal of Aerospace Engineering, 2009, 7:249-259.
[19] 刘璐璐. 二维三轴编织带缠绕碳纤维复合材料机匣包容性研究[D]. 杭州: 浙江大学, 2014:9-60.
LIU Lulu. Research on the containment of 2D carbon fiber triaxial braided tape wound composite casing[D]. Hangzhou: Zhejiang University, 2014:9-60.
[20] 牛丹丹. Kevlar织物缠绕增强机匣包容性研究[D]. 杭州: 浙江大学, 2015:5-26.
NIU Dandan. Research on the containment of Kevlar fabric reinforced casing[D]. Hangzhou: Zhejiang University, 2015:5-26.
[21] 练军, 顾伯洪. 三维编织复合材料动态冲击性能的数值模拟[J]. 纺织学报, 2011, 32(1):41-45,50.
LIAN Jun, GU Bohong. Numerical simulation of dynamic performance of three-dimensional braided composites[J]. Journal of Textile Research, 2011, 32(1):41-45,50.
[22] 冯振宇, 裴惠, 迟琪琳, 等. Kevlar织物软壁包容环抗冲击数值仿真分析研究[J]. 振动与冲击, 2020, 39(10):15-23.
FENG Zhenyu, PEI Hui, CHI Qilin, et al. Investigation on the high speed impact numerical simulation of Kevlar fabrics soft-wall containment[J]. Journal of Vibration and Shock, 2020, 39(10):15-23.
[1] QIAN Miao, HU Hengdie, XIANG Zhong, MA Chengzhang, HU Xudong. Flow and heat transfer characteristics of non-uniform heat-pipe heat exchanger [J]. Journal of Textile Research, 2021, 42(12): 151-158.
[2] ZHOU Haobang, SHEN Min, YU Lianqing, XIAO Shichao. Effect of structural parameter of relay nozzles on characteristics of flow field in profiled reed of air jet loom [J]. Journal of Textile Research, 2021, 42(11): 166-172.
[3] CHEN Yali, ZHAO Guomeng, REN Lipei, PAN Luqi, CHEN Bei, XIAO Xingfang, XU Weilin. Preparation and performance of aramid fabric-based interfacial photothermal evaporation materials [J]. Journal of Textile Research, 2021, 42(08): 115-121.
[4] SHI Qianqian, WANG Jiang, ZHANG Yuze, LIN Huiting, WANG Jun. Numerical analysis on formation mechanism of airflow field in rotor spinning unit [J]. Journal of Textile Research, 2021, 42(02): 180-184.
[5] CHEN Jieru, QIU Shiyuan, YANG Qingqing, ZHOU Yi. Research on inter-yarn friction of aramid fabric based on adjustable tension device [J]. Journal of Textile Research, 2021, 42(01): 67-72.
[6] LI Meizhen, ZHAO Shiyi, FENG Yanli, GUO Xiaoqing, YU Xiaoqing. Preparation and properties of conveyor belt reinforced by F-12 aramid fabric [J]. Journal of Textile Research, 2020, 41(12): 87-93.
[7] CHU Xi, QIU Hua. Flow simulations of ring swirl nozzle under different inlet pressure conditions [J]. Journal of Textile Research, 2020, 41(09): 33-38.
[8] MA Feifei. Stab-resistant performance and wearability of composite materials made by discrete resin molding [J]. Journal of Textile Research, 2020, 41(07): 67-71.
[9] LI Danyang, WANG Rui, LIU Xing, ZHANG Shujie, XIA Zhaopeng, YAN Ruosi, DAI Erqing. Effect of shear thickening fluid on quasi-static stab resistance of aramid-based soft armor materials [J]. Journal of Textile Research, 2020, 41(03): 106-112.
[10] DING Ning, LIN Jie. Free convection calculation method for performance prediction of thermal protective clothing in an unsteady thermal state [J]. Journal of Textile Research, 2020, 41(01): 139-144.
[11] LI Sihu, SHEN Min, BAI Cong, CHEN Liang. Influence of structure parameter of auxiliary nozzle in air-jet loom on characteristics of flow field [J]. Journal of Textile Research, 2019, 40(11): 161-167.
[12] CHEN Xu, WU Bingyang, FAN Ying, YANG Musheng. Numerical simulation of low temperature protection process for heat storage fabrics [J]. Journal of Textile Research, 2019, 40(07): 163-168.
[13] ZHENG Zhenrong, ZHI Wei, HAN Chenchen, ZHAO Xiaoming, PEI Xiaoyuan. Numerical simulation of heat transfer of carbon fiber fabric under impact of heat flux [J]. Journal of Textile Research, 2019, 40(06): 38-43.
[14] CAO Haijian, CHEN Hongxia, HUANG Xiaomei. Numerical simulation of side compressive properties on glass fiber/epoxy resin sandwich composite [J]. Journal of Textile Research, 2019, 40(05): 59-63.
[15] GUO Zhen, LI Xinrong, BU Zhaoning, YUAN Longchao. Three-dimensional numerical simulation of fiber movement in nozzle of murata vortex spinning [J]. Journal of Textile Research, 2019, 40(05): 131-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 119 -120 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(03): 7 -8 .