Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (08): 122-127.doi: 10.13475/j.fzxb.20200905806

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Preparation of spunlaced viscose/polyaniline composite fiber membrane and its adsorption performance

LIU Suo, WU Dingsheng, LI Man, ZHAO Lingling, FENG Quan()   

  1. School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
  • Received:2020-09-21 Revised:2021-03-31 Online:2021-08-15 Published:2021-08-24
  • Contact: FENG Quan E-mail:fengquan@ahpu.edu.cn

Abstract:

Aiming at the low cost-performance ratio and singular adsorption effect of the existing adsorption materials, an in-situ growth method was used to form polyaniline on spunlaced viscose fiber membrane for good hydrophilicity, high cost-performance ratio and close vertical and horizontal strength to produce spunlaced viscose/polyaniline composite fiber membrane. The microstructure and chemical composition of the spunlaced viscose/polyaniline composite fiber membrane were analyzed, and the adsorption performance and the adsorption process for Reactive Red, Methyl Orange and Cr6+ ion in printing and dyeing wastewater were explored. The research results show that the polyaniline polymer can grow uniformly on the spunlaced viscose fiber membrane when adding 1.0 g aniline monomer, and the adsorption capacity of Reactive Red, Methyl Orange and Cr6+ ion reached 101.3, 81.2 and 105.04 mg/g respectively after 6 h adsorption. Meanwhile, the adsorption process of Reactive Red, Methyl Orange and Cr6+ ion conformed to the Langmuir isotherm adsorption model, indicating that the spunlaced viscose/polyaniline composite fiber membrane has good adsorption performance.

Key words: spunlaced viscose fiber membrane, polyaniline, printing and dyeing wastewater, Cr6+ion, Langmuir adsorption model, in-situ growth method

CLC Number: 

  • TQ342

Fig.1

SEM images of composite fiber membrane with different aniline additions(×1 000)"

Tab.1

Porosity and weight gain of composite fiber membrane"

苯胺单体添加量/g 比表面积/(m2·g-1) 质量增加率/%
0.0 11.461
1.0 10.145 22.30
1.2 7.284 38.44

Fig.2

FT-IR spectra of spunlaced viscose and spunlaced viscose/PANI composite fiber membrane"

Tab.2

Element types and content of composite fiber membrane %"

样品名称 C O N S
水刺粘胶纤维膜 41.57 58.43
水刺粘胶/PANI复合纤维膜 54.83 34.88 7.20 3.09

Fig.3

Adsorption performance of composite fiber membrane to Reactive Red, Methyl Orange and Cr6+ ion"

Fig.4

Adsorption performance of composite fiber membrane to Reactive Red(a), Methyl Orange(b) and Cr6+ ion(c) with different initial concentrations"

Tab.3

Isothermal data for adsorption equilibrium equation of composite fiber membrane"

废水污染物
类别
Qe/
(mg·g-1)
Qmax/
(mg·g-1)
b 拟合系数
R2
活性红 101.30 121.45 0.008 70 0.994 9
甲基橙 81.20 101.80 0.006 60 0.988 0
Cr6+离子 105.04 112.89 0.002 50 0.992 0
[1] 刘雅玲, 王强, 吴悦颖, 等. 纺织行业水污染物排放量的关键影响要素研究[J]. 环境污染与防治, 2015, 37(3):58-61,65.
LIU Yaling, WANG Qiang, WU Yueying, et al. Research on key influencing factors of water pollutant discharge in textile industry[J]. Environmental Pollution and Prevention, 2015, 37(3):58-61,65.
[2] 陈红, 李响, 薛罡, 等. 当前印染废水治理中的关键问题[J]. 工业水处理, 2015, 35(10):16-19.
CHEN Hong, LI Xiang, XUE Gang, et al. Key issues in the treatment of printing and dyeing wastewater[J]. Industrial Water Treatment, 2015, 35(10):16-19.
[3] 孙晓飞, 张宁, 刘淑艳, 等. 六价铬Cr(Ⅵ)最新研究进展[J]. 应用化工, 2020, 49(4):1035-1038,1043.
SUN Xiaofei, ZHANG Ning, LIU Shuyan, et al. The latest research progress of hexavalent chromium Cr(Ⅵ)[J]. Applied Chemical Industry, 2020, 49(4):1035-1038,1043.
[4] 张双. 物理吸附、化学氧化和生物法去除高盐废水中的COD[D]. 大连:大连理工大学, 2018:9-12.
ZHANG Shuang. Physical adsorption,chemical oxidation and biological methods to remove COD in high-salt wastewater[J]. Dalian:Dalian University of Technology, 2018:9-12.
[5] WANG F D, LI J, SU Y, et al. Adsorption and recycling of Cd(II) from wastewater using straw cellulose hydrogel beads[J]. Journal of Industrial and Engineering Chemistry, 2019, 80:361-369.
doi: 10.1016/j.jiec.2019.08.015
[6] 钱怡帆, 周堂, 张礼颖, 等. 聚丙烯腈/醋酸纤维素/TiO2复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020, 41(5):8-14.
QIAN Yifan, ZHOU Tang, ZHANG Liying, et al. Preparation of polyacrylonitrile/cellulose acetate/TiO2 composite nanofiber membrane and its photocatalytic degradation performance[J]. Journal of Textile Research, 2020, 41(5):8-14.
[7] FENG Quan, WU Dingsheng, ZHAO Yong, et al. Electrospun AOPAN/RC blend nanofiber membrane for efficient removal of heavy metal ions from water[J]. Journal of Hazardous Materials, 2018, 344:819-828.
doi: S0304-3894(17)30857-9 pmid: 29172168
[8] FENG Quan, LI Xing, WU Dingsheng, et al. Preparation of the AOPAN-poly(HEMA) nanofibers via the atom transfer radical polymerization method and their application for laccase immobilization[J]. Journal of Industrial Textiles, 2018, 48(1):25-37.
doi: 10.1177/1528083717721921
[9] 李洪枚. 漆酶催化氧化废水中17α-乙炔基雌二醇[J]. 环境科学与技术, 2017, 40(1):24-30.
LI Hongmei. Laccase catalyzed oxidation of 17α-ethinyl estradiol in wastewater[J]. Environmental Science and Technology, 2017, 40(1):24-30.
[10] 李玲云. 聚苯胺基复合材料的合成及吸附性能研究[D]. 兰州:兰州大学, 2020:4-9.
LI Lingyun. Synthesis and adsorption properties of polyaniline matrix composites[D]. Lanzhou:Lanzhou University, 2020:4-9.
[11] 凤权, 刘锁, 武丁胜, 等. ATRP改性水刺黏胶纤维的制备及其Fe3+离子吸附性能[J]. 东华大学学报(自然科学版), 2020, 46(3):348-351,382.
FENG Quan, LIU Suo, WU Dingsheng, et al. Preparation of ATRP modified spunlace viscose fiber and its Fe3+ ion adsorption performance[J]. Journal of Donghua University (Natural Science), 2020, 46(3):348-351,382.
[12] YANG S, JI G X, CAI S Y, et al. Polypropylene nonwoven fabric modified with oxime and guanidine for antibiofouling and highly selective uranium recovery from seawater[J]. Journal of Radioanalytical and Nuclear Chemistry, 2019, 321(1) : 323-332.
doi: 10.1007/s10967-019-06578-7
[13] CHIGONDO M, PAUMO H K, BHAUMIK M, et al. Hydrous CeO2-Fe3O4 decorated polyaniline fibers nanocomposite for effective defluoridation of drinking water[J]. Journal of Colloid and Interface Science, 2018, 532:500-516.
doi: 10.1016/j.jcis.2018.07.134
[14] LYU W, YU M T, FENG J T, et al. Highly crystalline polyaniline nanofibers coating with low-cost biomass for easy separation and high efficient removal of anionic dye ARG from aqueous solution[J]. Applied Surface Science, 2018, 458:413-424.
doi: 10.1016/j.apsusc.2018.07.074
[15] 张媛媛. 煤基聚苯胺电极吸附/电解协同处理废水的性能和机理研究[D]. 西安:西安科技大学, 2017:4-32.
ZHANG Yuanyuan. Study on the performance and mechanism of coal-based polyaniline electrode adsorption/electrolysis cooperative treatment of wastewater[D]. Xi'an:Xi'an University of Science and Technology, 2017:4-32.
[1] ZHOU Xinru, ZHOU Xiaoya, MA Yongjian, HU Chengye, ZHAO Xiaoman, HONG Jianhan, HAN Xiao. Preparation and pressure sensitivity of conductive polyaniline/polyurethane foam [J]. Journal of Textile Research, 2021, 42(04): 62-68.
[2] JIANG Wenwen, MO Huilin, FAN Tingyue, ZHAO Ziyao, REN Yu, WANG Chunxia, ZHANG Wei, ZANG Chuanfeng. Preparation of Ag6Si2O7/TiO2 photocatalyst and its photocatalytic degradation of methylene blue [J]. Journal of Textile Research, 2021, 42(04): 107-113.
[3] GUAN Binbin, LI Qing, CHEN Linghui, XU Yuting, FAN Zenglu. Fluorescence detection of Cr(VI) from printing and dyeing wastewater by zirconium-organic framework [J]. Journal of Textile Research, 2021, 42(02): 122-128.
[4] HU Chengye, MIAO Runwu, HAN Xiao, HONG Jianhan, GIL Ignacio. Effect of polyvinyl alcohol on durability of polyaniline conductive layer on poly(p-phenylene terephthamide) yarn surface [J]. Journal of Textile Research, 2020, 41(04): 91-97.
[5] WU Yingxin, HU Chengye, ZHOU Xiaoya, HAN Xiao, HONG Jianhan, GIL Ignacio. Strain sensing property of flexible wearable spandex/polyaniline/polyurethane composites [J]. Journal of Textile Research, 2020, 41(04): 21-25.
[6] ZOU Lihua, XU Zhenzhen, SUN Yanyan, WANG Tairan, QIU Yiping. Influence of graphene oxide/polyaniline functional film on electromagnetic shielding property of cotton fabrics [J]. Journal of Textile Research, 2019, 40(08): 109-116.
[7] MIAO Runwu, JIN Lihua, WEI Qiyu, HAN Xiao, HONG Jianhan. Preparation and electromagnetic shielding property of conductive poly(p-phenylene terephamide) of reinforced composite materials [J]. Journal of Textile Research, 2019, 40(02): 100-104.
[8] . Conductivity of polyaniline / chitosan / wool composite fabrics and molecular simulation for aniline adsorption [J]. Journal of Textile Research, 2018, 39(12): 95-100.
[9] . Preparation and photocatalytic properties of  polyester fabric loaded with titanium dioxide [J]. Journal of Textile Research, 2018, 39(11): 91-95.
[10] . Adsorption properties of cross-linked amino starch onto methylene blue [J]. Journal of Textile Research, 2018, 39(11): 103-110.
[11] . Preparation and photocatalytic properties of BiVO4 loaded fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 89-95.
[12] . Continuous preparation and properties of conductive polyester/polyaniline composite yarns [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 20-25.
[13] . Electrical and mechanical properties of conductive polytrimethylene terephthalate / polyaniline composite yarns [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(02): 40-46.
[14] . Preparation and pH-responsive behavior of polyaniline/silk fabrics [J]. Journal of Textile Research, 2016, 37(4): 91-95.
[15] . Strain sensing property of knitted fabric of conductive ultrahigh molecular weight polyethylene/polyaniline composite yarn [J]. Journal of Textile Research, 2016, 37(2): 73-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!