Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (12): 180-187.doi: 10.13475/j.fzxb.20200907708

• Comprehensive Review • Previous Articles     Next Articles

Research progress in braided cordage made from high-performance fibers for spacecraft applications

DING Xu1,2, SUN Ying1,2(), LUO Min3, WANG Xingze3, CHEN Li1,2, CHEN Guangwei1,2   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
    3. Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
  • Received:2020-09-29 Revised:2021-08-23 Online:2021-12-15 Published:2021-12-29
  • Contact: SUN Ying E-mail:sunying@tiangong.edu.cn

Abstract:

According to the application requirements of braided cordages mode from high-performance fibers in the lightweight scenes of spacecraft structures, such as space tether, truss mesh deployable antenna, thermal knife holding and releasing device. The performance of high-performance organic fibers used in the aerospace industry, braided structures and applications of cordage in spacecraft structures were reviewed. The main problems existing in the application of braided cordages in spacecraft structures were analyzed and the creep and stress relaxation properties of braided cordages are the key factors affecting the structural stability of spacecraft during long-term service. Then, the effects of materials, environmental conditions, and load levels on the creep and stress relaxation behavior of braided cordages were introduced. Finally, some problems existed in the current researches were pointed out, and the future research directions were proposed in view of these problems. It is expected that this work would provide a reference for the development of high-performance, high-stability, adjustable and controllable braided cordages for aerospace applications.

Key words: spacecraft, thermal knife holding and releasing device, braided cordage, creep, stress relaxation

CLC Number: 

  • TS106.5

Tab.1

Properties of high performance fibers"

纤维及牌号 生产商 密度/
(g·cm-3)
比强度/
(cN·tex-1)
比模量/
(cN·tex-1)
长期使用最
高温度/℃
熔点/
公定回潮
率/%
耐辐射
性能
参考
文献
芳纶(Kevlar®49) 美国DuPont公司 1.44 208 4 900 149~177 560 3.5
芳纶(泰普龙®529S) 烟台泰和新材料
股份有限公司
1.44 216 6 255 113~134 >500 3.5
聚芳酯(Vectran®HT 560) 日本Kuraray公司 1.40 229 5 300 < 100 330 < 0.1 [18]
超高分子量聚乙烯
(Dyneema®SK 78)
荷兰DSM集团 0.97 370 11 900 < 70 150 < 1.0 [19]
超高分子量聚乙烯
(DOYENTRONTEX®)
北京同益中新材料
科技股份有限公司
0.97 360 12 500 < 0.1 [20]
聚酰亚胺(P84) 德国Evonik公司 1.41 38 1 455 250 315 < 1.0 [21]
聚酰亚胺(S35) 江苏先诺新材料
有限公司
1.44 236 6 250 < 350 320 < 1.0 [22]

Fig.1

Motion path of braid yarns and structures of braided cordage.(a) Hollow-braid cordage; (b) Braid tape"

Tab.2

Space tether missions"

任务名称 年份 纤维材料 系绳长
度/km
系绳直
径/mm
TSS-1[30,31] 1992 Nomex®、Kevlar®、铜线 20 2.54
SEDS-1[32] 1993 Spectra® 20 0.78
SEDS-2[33] 1994 Spectra® 20 0.78
TiPS[34] 1996 Spectra®、丙烯酸 4 2
ProSEDS[35,36] 2003 Dyneema®、Kevlar®、铝线 15 0.8~1.6
STARS-II[37] 2014 Kevlar®、铝线 0.35
STARS-C[38] 2016 Kevlar® 0.1 0.4
STARS-Me[38] 2018 Kevlar® 2 < 1

Fig.2

Deformation of cable net antenna"

Fig.3

Thermal knife holding and release device"

[1] CARTMELL M, MCKENZIE D. A review of space tether research[J]. Progress in Aerospace Sciences, 2008, 44(1):1-21.
doi: 10.1016/j.paerosci.2007.08.002
[2] MOORE C. Practical applications of cables and ropes in the ISS countermeasures system[C]// SVETLIK R, WILLIAMS A. Proceedings of 2017 IEEE Aerospace Conference. New York:IEEE, 2017: 1-15.
[3] XU C, LI J, YAO Y, et al. Research of cable deformation effects on synchronous accuracy of serial cable-driven sheaves[J]. Advances in Mechanical Engineering, 2017, 9(9):1-13.
[4] LIU S, LI D X, JIANG J P. General mesh configuration design approach for large cable-network antenna reflectors[J]. Journal of Structural Engineering, 2014, 140(2):1-9.
[5] FENG C, CHU Z. Fiber reinforcement[M]. Singapore: Springer, 2018: 63-150.
[6] SHARMA R, GOEL A, MEHTAB S. High performance fibre-aramids[J]. Man-Made Textiles in India, 2012, 40(11):373-377.
[7] 钱坤, 曹海建, 盛东晓, 等. 低温等离子体处理对芳纶界面性能的影响[J]. 纺织学报, 2010, 31(10):10-13.
QIAN Kun, CAO Haijian, SHENG Dongxiao, et al. Influence of low temperature plasma treatment on surface performance of aramid fibers[J]. Journal of Textile Research, 2010, 31(10):10-13.
[8] 姜兆辉, 金梦甜, 郭增革, 等. 聚芳酯纤维的化学稳定性及其腐蚀降解[J]. 纺织学报, 2019, 40(12):9-15.
JIANG Zhaohui, JIN Mengtian, GUO Zengge, et al. Chemical stability and corrosion degradation of polyarylester fiber[J]. Journal of Textile Research, 2019, 40(12):9-15.
[9] GROTZINGER J P, CRISP J, VASAVADA A R, et al. Mars science laboratory mission and science investiga-tion[J]. Space Science Reviews, 2012, 170(1-4):5-56.
doi: 10.1007/s11214-012-9892-2
[10] NASA Jet Propulsion Laboratory(JPL). Device for lowering mars science laboratory rover to the surface[EB/OL].(2008-11-19) [2020-06-15]. https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA11428.
[11] BALAGNA C, IRFAN M, PERERO S, et al. Antibacterial nanostructured composite coating on high performance VectranTM fabric for aerospace struc-tures[J]. Surface and Coatings Technology, 2019, 373:47-55.
doi: 10.1016/j.surfcoat.2019.05.076
[12] LARSON K. Ultraviolet testing of space suit materials for mars[C]// 47th International Conference on Environmental Systems. Charleston:The Space Journal of Asgardia, 2017: 1-7.
[13] 刘羽熙, 刘宇艳, 王长国, 等. 减缓Vectran纤维光辐照降解的涂层防护研究[J]. 装备环境工程, 2020, 17(1):20-24.
LIU Yuxi, LIU Yuyan, WANG Changguo, et al. Coating protection against photodegradation of Vectran fibers[J]. Equipment Environmental Engineering, 2020, 17(1):20-24.
[14] CHA J H, KIM Y, KUMAR S K S, et al. Ultra-high-molecular-weight polyethylene as a hypervelocity impact shielding material for space structures[J]. Acta Astronautica, 2020, 168:182-190.
doi: 10.1016/j.actaastro.2019.12.008
[15] WANG H, XU L, LI R, et al. Improving the creep resistance and tensile property of UHMWPE sheet by radiation cross-linking and annealing[J]. Radiation Physics and Chemistry, 2016, 125:41-49.
doi: 10.1016/j.radphyschem.2016.03.009
[16] ZHANG M, NIU H, WU D. Polyimide fibers with high strength and high modulus: preparation, structures, properties, and applications[J]. Macromolecular Rapid Communications, 2018, 39(20):1-14.
[17] 张梦颖, 牛鸿庆, 韩恩林, 等. 高强高模聚酰亚胺纤维及其应用研究[J]. 绝缘材料, 2016, 49(8):12-16.
ZHANG Mengying, NIU Hongqing, HAN Enlin, et al. Research and application of polyimide fibers with high strength and high modulus[J]. Insulating Materials, 2016, 49(8):12-16.
[18] Kuraray. Vectran brochure[EB/OL]. (2015-06-12) [2020-06-15]. https://www.vectranfiber.com/wp-content/uploads/2015/12/Kuraray-Vectran-rochure.pdf.
[19] DSM. Dyneema® high-strength, high-modulus polyethylene fiber[EB/OL]. (2008-01-01) [2020-06-15]. https://www.air-work.swiss/unuSiteManager/Presentation/Public/upload/doc/dyneema.pdf.
[20] DuPont. Kevlar technical guide[EB/OL]. (2019-03-19) [2020-06-15]. https://www.dupont.com/content/dam/dupont/amer/us/en/safety/public/documents/en/Kevlar_Technical_Guide_0319.pdf.
[21] Evonik Fibres GmbH. Technical brochure-P84® fibers[EB/OL]. [2020-06-15]. https://www.p84.com/product/peek-industrial/downloads/p84-fibre-technical-brochure.pdf.
[22] 北京同益中新材料科技股份有限公司. DOYENTRONTEX® 纤维[EB/OL]. [2020-06-15]. http://www.bjtyz.com/content/details2_133.html.
Beijing Tongyizhong New Material Technology Corporation. DOYENTRONTEX® fiber [EB/OL]. [2020-06-15]. http://www.bjtyz.com/content/details2_133.html.
[23] MCKENNA H A, HEARLE J W, O'HEAR N. Handbook of fibre rope technology[M]. London: Elsevier, 2004:5-32.
[24] 赵倩娟, 焦亚男. 二维编织包芯绳索的结构与拉伸性能[J]. 纺织学报, 2012, 33(3):48-52.
ZHAO Qianjuan, JIAO Ya'nan. The structure and tensile properties of 2D braided cored rope[J]. Journal of Textile Research, 2012, 33(3):48-52.
[25] MICHAEL M, KERN C, HEINZE T. Braiding processes for braided ropes[J]. Advances in Braiding Technology, 2016.DOI: 10.1016/B978-0-08-100407-4.00009-0.
doi: 10.1016/B978-0-08-100407-4.00009-0
[26] LAOURINE E. Braided semi-finished products and braiding techniques, textile materials for lightweight constructions[M]. New York: Springer, 2016: 289-306.
[27] WILLIAMS P. A review of space tether technology[J]. Recent Patents on Space Technology, 2012, 2(1):22-36.
doi: 10.2174/1877611611202010022
[28] SASAKI S, OYAMA K, KAWASHIMA N, et al. Results from a series of tethered rocket experiments[J]. Journal of Spacecraft and Rockets, 1987, 24(5):444-453.
doi: 10.2514/3.25937
[29] KAWASHIMA N, SASAKI S, OYAMA K, et al. Results from a tethered rocket experiment (charge-2)[J]. Advances in Space Research, 1988, 8(1):197-201.
[30] CHAPEL J D, FLANDERS H. Tether dynamics and control results for tethered satellite system's initial flight[J]. NASA STI/Recon Technical Report A, 1993, 95:327-346.
[31] STONE N H, RAITT W, WRIGHT J R K. The TSS-1R electrodynamic tether experiment: scientific and technological results[J]. Advances in Space Research, 1999, 24(8):1037-1045.
doi: 10.1016/S0273-1177(99)00551-7
[32] CARROLL J. SEDS deployer design and flight performance[M]. Reston: AIAA ARC, 1993: 47-64.
[33] CARROLL J. Tethers for small satellite applica-tions[C]// OLDSON J. Small Satellite Conference. Reston:AIAA ARC, 1995: 16.
[34] PEARSON J. Overview of the electrodynamic delivery express (EDDE)[C]// CARROLL J, LEVIN E. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston:AIAA ARC, 2003: 1-14.
[35] GILCHRIST B. Propulsive small expandable deployer system (ProSEDS): preparing or flight[C]// BALANCE J, CURTIS L. 27th International Electric Propulsion Conference. Vienna: Electric Rocket Propulsion Society, 2001: 1-8.
[36] CURTIS L. Development of the flight tether for ProSEDS[C]// VAUGHN J, WELZYN K. AIP Conference Proceedings. New York:American Institute of Physics, 2002: 385-392.
[37] NOHMI M. Initial orbital performance result of nano-satellite stars-II[C]// Proceedings of the 2014 International Symposium on Artificial Intelligence, Robots and Automation in Space. Madrid:ESA Special Publication, 2014: 1-7.
[38] MASAHIRO N. Past results and future missions of STARS series satellite[C]// 18th Australian International Aerospace Congress (2019). Crows Nest:Engineers Australia, Royal Aeronautical Society, 2019: 1-6.
[39] ANSELMO L, PARDINI C. The survivability of space tether systems in orbit around the earth[J]. Acta Astronautica, 2005, 56(3):391-396.
doi: 10.1016/j.actaastro.2004.05.067
[40] KHAN S B, SANMARTIN J R. Analysis of tape tether survival in LEO against orbital debris[J]. Advances in Space Research, 2014, 53(9):1370-1376.
doi: 10.1016/j.asr.2014.02.008
[41] LOBANOV L, USTINOV A, VOLKOV V, et al. Al/TiO2 bilayer coatings for space applications: mechanical and thermoradiation properties[J]. Thin Solid Films, 2018, 668:30-37.
doi: 10.1016/j.tsf.2018.10.017
[42] HIROSAWA H, HIRABAYASHI H, KOBAYASHI H, et al. Space vlbi satellite halca and its engineering accomplishments[J]. Acta Astronautica, 2002, 50(5):301-309.
doi: 10.1016/S0094-5765(01)00171-0
[43] MEGURO A, SHINTATE K, USUI M, et al. In-orbit deployment characteristics of large deployable antenna reflector onboard engineering test satellite VIII[J]. Acta Astronautica, 2009, 65(9):1306-1316.
doi: 10.1016/j.actaastro.2009.03.052
[44] QI X, HUANG H, LI B, et al. A large ring deployable mechanism for space satellite antenna[J]. Aerospace Science and Technology, 2016, 58:498-510.
doi: 10.1016/j.ast.2016.09.014
[45] TANAKA H. Surface error estimation and correction of a space antenna based on antenna gainanalyses[J]. Acta Astronautica, 2011, 68(7/8):1062-1069.
doi: 10.1016/j.actaastro.2010.09.025
[46] TANG Y, LI T, WANG Z, et al. Surface accuracy analysis of large deployable antennas[J]. Acta Astronautica, 2014, 104(1):125-133.
doi: 10.1016/j.actaastro.2014.07.029
[47] TANG Y, LI T, MA X. Form finding of cable net reflector antennas considering creep and recovery behaviors[J]. Journal of Spacecraft and Rockets, 2016, 53(4):610-618.
doi: 10.2514/1.A33548
[48] 姜水清, 刘立平. 热刀致动的压紧释放装置研制[J]. 航天器工程, 2005, 14(4):31-34.
JIANG Shuiqing, LIU Liping. Development of the hold-down and release mechanism using thermal knife[J]. Spacecraft Engineering, 2005, 14(4):31-34.
[49] VANHASSEL R H. The ARA Mark 3 solar array design and development:CP-3328[R]. Washington:NASA, 1996: 119-134.
[50] YATES H. The EOS-PM1 solar array[C]// ZWANENBURG R. Proceedings of the Fifth European Space Power Conference (ESPC). Noordwijk:Esa Special Publication, 1998: 557.
[51] 曹长明, 关富玲, 黄河, 等. 新型热刀式锁紧释放装置设计与实验[J]. 浙江大学学报 (工学版), 2016, 50(12):2350-2356.
CAO Changming, GUAN Fuling, HUANG He, et al. Design and test of new thermal knife restraint and release device[J]. Journal of Zhejiang Univer-sity (Engineering Science), 2016, 50(12):2350-2356.
[52] KONINK T. Multipurpose holddown and release mechanism (MHRM)[C]// KESTER G. The 13th European Space Mechanisms and Tribology Sympo-sium(ESTMAS). Madrid:Esa Special Publication, 2009: 1-4.
[53] BONGERS E. Robustness improvement of ARA kevlar holddown restraint cables[C]// KONING J, KONINK T. 15th European Space Mechanisms & Tribology Symposium (ESMATS). Noordwijk:Esa Special Publication, 2013: 1-7.
[54] 李新立, 姜水清, 刘宾. 热刀式压紧释放装置释放可靠性验证实验及评估方法[J]. 航天器工程, 2012, 21(2):123-126.
LI Xinli, JIANG Shuiqing, LIU Bin. Release reliability validation tests and evaluation methods for the hold-down and release mechanism using thermal knife[J]. Spacecraft Engineering, 2012, 21(2):123-126.
[55] AUGUSTIJN J, GRIMMINCK M, BONGERS E, et al. Development of a non explosive low shock (NELS) holddown and release system[C]// 16th European Space Mechanisms and Tribology Symposium. Paris:Esa Special Publication, 2015: 1-6.
[56] FETTE R B, SOVINSKI M F. Vectran fiber time dependant behavior and additional static loading properties:TM-2004-212773[R]. Greenbelt: NASA, 2004: 1-21.
[57] FETE R B. Relaxation of Kevlar braided cords[D]. Washington DC: The George Washington University, 2004:1-42.
[58] JONES T, DOGGETT W, STANFIELD C, et al. Accelerated creep testing of high strength aramid webbing:NF1676L-13173[R]. Washington: NASA, 2012: 1-14.
[59] 丁许. 二维编织绳拉伸性能实验研究[D]. 天津: 天津工业大学, 2019: 61.
DING Xu. Experimental study on tensile properties of two-dimensional braided rope[D]. Tianjin: Tiangong University, 2019: 61.
[60] 李伟. Vectran纤维与绳索的蠕变与应力松弛行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2010: 59.
LI Wei. Research on creep and stress relaxation of Vectran fiber and rope[D]. Harbin: Harbin Institute of Technology, 2010: 59.
[61] JONES T, DOGGETT W. Time-dependent behavior of high strength Kevlar and Vectran webbing:NF1676L-16713[R]. Washington: NASA, 2014: 1-22.
[62] KENNER W S. Environmental effects on long term displacement data of woven fabric webbings under constant load for inflatable structures:NF1676L-19010[R]. Reston: NASA, 2015: 1-29.
[63] KENNER W S, JONES T C, BOFFE V M L. Controlled environmental effects on creep test data of woven fabric webbings for inflatable space modules:TM-2020-220561[R]. Washington: NASA, 2020:1-12.
[64] 杨惠杰. 聚酰亚胺编织绳的热机械变形规律及影响因素[D]. 哈尔滨: 哈尔滨工业大学, 2017: 56.
YANG Huijie. Thermomechanical deformation of polyimide braided rope and its influencing factors[D]. Harbin: Harbin Institute of Technology, 2017: 56.
[65] TANG Y, LI T, MA X. Creep and recovery behavior analysis of space mesh structures[J]. Acta Astronautica, 2016, 128(11/12):455-463.
doi: 10.1016/j.actaastro.2016.08.003
[66] HUANG W, LIU H, LIAN Y, et al. Modeling nonlinear creep and recovery behaviors of synthetic fiber ropes for deepwater moorings[J]. Applied Ocean Research, 2013, 39:113-120.
doi: 10.1016/j.apor.2012.10.004
[67] LIAN Y, ZHENG J, LIU H, et al. A study of the creep-rupture behavior of HMPE ropes using viscoelastic-viscoplastic-viscodamage modeling[J]. Ocean Engineering, 2018, 162:43-54.
doi: 10.1016/j.oceaneng.2018.05.003
[1] WANG Zexing, LI Shuai, TAN Dongyi, MENG Shuo, HE Bin. Effect of cyclic loading treatment on creep behavior of polyvinyl chloride coated membrane [J]. Journal of Textile Research, 2021, 42(07): 101-107.
[2] CHEN Kang, JIANG Quan, JI Hong, ZHANG Yang, SONG Minggen, ZHANG Yumei, WANG Huaping. Temperature related creep rupture mechanism of high-tenacity polyester industrial fiber [J]. Journal of Textile Research, 2020, 41(11): 1-9.
[3] WANG Zexing, WU Bo, LI Shuai, HE Bin. Energy dissipation evolution of jute fabric/polyethylene composite under cyclic stress relaxation [J]. Journal of Textile Research, 2020, 41(10): 74-80.
[4] . Prediction on creep predictions of polyvinyl chloride coated membrane [J]. Journal of Textile Research, 2018, 39(10): 68-73.
[5] . Analysis on components properties of alkali-soluble polyester/polyamide 6 sea island fiber [J]. Journal of Textile Research, 2018, 39(09): 15-21.
[6] . Tensile creep characteristics of polyvinyl chloride coated membrane material with damage [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 57-64.
[7] LIANG Fangge;CHENG Longdi;LIU Yan;LIU Xiaozhen;SHAO Nan. Study on the stress relaxation mechanism of air jet vortex spun yarns with naturally colored cotton [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(8): 27-29.
[8] XIAO Feng;LI Yingjian. Testing and analysis of the creep behavior of spandex core-spun yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(6): 48-51.
[9] ZHU Yongyi;LIU Xiaoming;CHEN Nanliang. Mechanical model for the stress relaxationof PVC calendered flexible composites [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(11): 36-39.
[10] LIU Baosheng;GU Zhaowen;WANG Qi. Models of mechanical properties of the cross section PTT filament and PET filament [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(10): 4-8.
[11] HOU Xiuliang;GAO Weidong;WANG Shanyuan;ZHOU Qicheng. Tensile properties of cashmere fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(10): 18-22.
[12] MA Jian-wei;LIU Wei;CHEN Shao-juan. Mechanical properties of functional nano-nylon fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 62-64.
[13] ZHANG Tao;BAO Wen-bin;YU Jian-yong . Simulate analysis of mechanical properties of bamboo pulp fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(1): 28-29.
[14] LI Ying-jian;XIAO Feng . Creep-capability of soybean protein fiber spandex core-spun yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(1): 78-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[7] PAN Xu-wei;GU Xin-jian;HAN Yong-sheng;CHENG Yao-dong. Research on quick response of apparel supply chain for collaboration[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 54 -57 .
[8] HUANG Xiao-hua;SHEN Ding-quan. Degumming and dyeing of pineapple leaf fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 75 -77 .
[9] GU Da-qiang;NIE Lin. Reinforcement fabric knitting machine for plastic pressure hose[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 86 -88 .
[10] WANG Ju-ping;YIN Jia-min;PENG Zhao-qing;ZHANG Feng. Ultrasonic wave aided enzymatic washing of reactive dyed fabrics[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 93 -95 .