Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (12): 180-187.doi: 10.13475/j.fzxb.20200907708
• Comprehensive Review • Previous Articles Next Articles
DING Xu1,2, SUN Ying1,2(), LUO Min3, WANG Xingze3, CHEN Li1,2, CHEN Guangwei1,2
CLC Number:
[1] |
CARTMELL M, MCKENZIE D. A review of space tether research[J]. Progress in Aerospace Sciences, 2008, 44(1):1-21.
doi: 10.1016/j.paerosci.2007.08.002 |
[2] | MOORE C. Practical applications of cables and ropes in the ISS countermeasures system[C]// SVETLIK R, WILLIAMS A. Proceedings of 2017 IEEE Aerospace Conference. New York:IEEE, 2017: 1-15. |
[3] | XU C, LI J, YAO Y, et al. Research of cable deformation effects on synchronous accuracy of serial cable-driven sheaves[J]. Advances in Mechanical Engineering, 2017, 9(9):1-13. |
[4] | LIU S, LI D X, JIANG J P. General mesh configuration design approach for large cable-network antenna reflectors[J]. Journal of Structural Engineering, 2014, 140(2):1-9. |
[5] | FENG C, CHU Z. Fiber reinforcement[M]. Singapore: Springer, 2018: 63-150. |
[6] | SHARMA R, GOEL A, MEHTAB S. High performance fibre-aramids[J]. Man-Made Textiles in India, 2012, 40(11):373-377. |
[7] | 钱坤, 曹海建, 盛东晓, 等. 低温等离子体处理对芳纶界面性能的影响[J]. 纺织学报, 2010, 31(10):10-13. |
QIAN Kun, CAO Haijian, SHENG Dongxiao, et al. Influence of low temperature plasma treatment on surface performance of aramid fibers[J]. Journal of Textile Research, 2010, 31(10):10-13. | |
[8] | 姜兆辉, 金梦甜, 郭增革, 等. 聚芳酯纤维的化学稳定性及其腐蚀降解[J]. 纺织学报, 2019, 40(12):9-15. |
JIANG Zhaohui, JIN Mengtian, GUO Zengge, et al. Chemical stability and corrosion degradation of polyarylester fiber[J]. Journal of Textile Research, 2019, 40(12):9-15. | |
[9] |
GROTZINGER J P, CRISP J, VASAVADA A R, et al. Mars science laboratory mission and science investiga-tion[J]. Space Science Reviews, 2012, 170(1-4):5-56.
doi: 10.1007/s11214-012-9892-2 |
[10] | NASA Jet Propulsion Laboratory(JPL). Device for lowering mars science laboratory rover to the surface[EB/OL].(2008-11-19) [2020-06-15]. https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA11428. |
[11] |
BALAGNA C, IRFAN M, PERERO S, et al. Antibacterial nanostructured composite coating on high performance VectranTM fabric for aerospace struc-tures[J]. Surface and Coatings Technology, 2019, 373:47-55.
doi: 10.1016/j.surfcoat.2019.05.076 |
[12] | LARSON K. Ultraviolet testing of space suit materials for mars[C]// 47th International Conference on Environmental Systems. Charleston:The Space Journal of Asgardia, 2017: 1-7. |
[13] | 刘羽熙, 刘宇艳, 王长国, 等. 减缓Vectran纤维光辐照降解的涂层防护研究[J]. 装备环境工程, 2020, 17(1):20-24. |
LIU Yuxi, LIU Yuyan, WANG Changguo, et al. Coating protection against photodegradation of Vectran fibers[J]. Equipment Environmental Engineering, 2020, 17(1):20-24. | |
[14] |
CHA J H, KIM Y, KUMAR S K S, et al. Ultra-high-molecular-weight polyethylene as a hypervelocity impact shielding material for space structures[J]. Acta Astronautica, 2020, 168:182-190.
doi: 10.1016/j.actaastro.2019.12.008 |
[15] |
WANG H, XU L, LI R, et al. Improving the creep resistance and tensile property of UHMWPE sheet by radiation cross-linking and annealing[J]. Radiation Physics and Chemistry, 2016, 125:41-49.
doi: 10.1016/j.radphyschem.2016.03.009 |
[16] | ZHANG M, NIU H, WU D. Polyimide fibers with high strength and high modulus: preparation, structures, properties, and applications[J]. Macromolecular Rapid Communications, 2018, 39(20):1-14. |
[17] | 张梦颖, 牛鸿庆, 韩恩林, 等. 高强高模聚酰亚胺纤维及其应用研究[J]. 绝缘材料, 2016, 49(8):12-16. |
ZHANG Mengying, NIU Hongqing, HAN Enlin, et al. Research and application of polyimide fibers with high strength and high modulus[J]. Insulating Materials, 2016, 49(8):12-16. | |
[18] | Kuraray. Vectran brochure[EB/OL]. (2015-06-12) [2020-06-15]. https://www.vectranfiber.com/wp-content/uploads/2015/12/Kuraray-Vectran-rochure.pdf. |
[19] | DSM. Dyneema® high-strength, high-modulus polyethylene fiber[EB/OL]. (2008-01-01) [2020-06-15]. https://www.air-work.swiss/unuSiteManager/Presentation/Public/upload/doc/dyneema.pdf. |
[20] | DuPont. Kevlar technical guide[EB/OL]. (2019-03-19) [2020-06-15]. https://www.dupont.com/content/dam/dupont/amer/us/en/safety/public/documents/en/Kevlar_Technical_Guide_0319.pdf. |
[21] | Evonik Fibres GmbH. Technical brochure-P84® fibers[EB/OL]. [2020-06-15]. https://www.p84.com/product/peek-industrial/downloads/p84-fibre-technical-brochure.pdf. |
[22] | 北京同益中新材料科技股份有限公司. DOYENTRONTEX® 纤维[EB/OL]. [2020-06-15]. http://www.bjtyz.com/content/details2_133.html. |
Beijing Tongyizhong New Material Technology Corporation. DOYENTRONTEX® fiber [EB/OL]. [2020-06-15]. http://www.bjtyz.com/content/details2_133.html. | |
[23] | MCKENNA H A, HEARLE J W, O'HEAR N. Handbook of fibre rope technology[M]. London: Elsevier, 2004:5-32. |
[24] | 赵倩娟, 焦亚男. 二维编织包芯绳索的结构与拉伸性能[J]. 纺织学报, 2012, 33(3):48-52. |
ZHAO Qianjuan, JIAO Ya'nan. The structure and tensile properties of 2D braided cored rope[J]. Journal of Textile Research, 2012, 33(3):48-52. | |
[25] |
MICHAEL M, KERN C, HEINZE T. Braiding processes for braided ropes[J]. Advances in Braiding Technology, 2016.DOI: 10.1016/B978-0-08-100407-4.00009-0.
doi: 10.1016/B978-0-08-100407-4.00009-0 |
[26] | LAOURINE E. Braided semi-finished products and braiding techniques, textile materials for lightweight constructions[M]. New York: Springer, 2016: 289-306. |
[27] |
WILLIAMS P. A review of space tether technology[J]. Recent Patents on Space Technology, 2012, 2(1):22-36.
doi: 10.2174/1877611611202010022 |
[28] |
SASAKI S, OYAMA K, KAWASHIMA N, et al. Results from a series of tethered rocket experiments[J]. Journal of Spacecraft and Rockets, 1987, 24(5):444-453.
doi: 10.2514/3.25937 |
[29] | KAWASHIMA N, SASAKI S, OYAMA K, et al. Results from a tethered rocket experiment (charge-2)[J]. Advances in Space Research, 1988, 8(1):197-201. |
[30] | CHAPEL J D, FLANDERS H. Tether dynamics and control results for tethered satellite system's initial flight[J]. NASA STI/Recon Technical Report A, 1993, 95:327-346. |
[31] |
STONE N H, RAITT W, WRIGHT J R K. The TSS-1R electrodynamic tether experiment: scientific and technological results[J]. Advances in Space Research, 1999, 24(8):1037-1045.
doi: 10.1016/S0273-1177(99)00551-7 |
[32] | CARROLL J. SEDS deployer design and flight performance[M]. Reston: AIAA ARC, 1993: 47-64. |
[33] | CARROLL J. Tethers for small satellite applica-tions[C]// OLDSON J. Small Satellite Conference. Reston:AIAA ARC, 1995: 16. |
[34] | PEARSON J. Overview of the electrodynamic delivery express (EDDE)[C]// CARROLL J, LEVIN E. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston:AIAA ARC, 2003: 1-14. |
[35] | GILCHRIST B. Propulsive small expandable deployer system (ProSEDS): preparing or flight[C]// BALANCE J, CURTIS L. 27th International Electric Propulsion Conference. Vienna: Electric Rocket Propulsion Society, 2001: 1-8. |
[36] | CURTIS L. Development of the flight tether for ProSEDS[C]// VAUGHN J, WELZYN K. AIP Conference Proceedings. New York:American Institute of Physics, 2002: 385-392. |
[37] | NOHMI M. Initial orbital performance result of nano-satellite stars-II[C]// Proceedings of the 2014 International Symposium on Artificial Intelligence, Robots and Automation in Space. Madrid:ESA Special Publication, 2014: 1-7. |
[38] | MASAHIRO N. Past results and future missions of STARS series satellite[C]// 18th Australian International Aerospace Congress (2019). Crows Nest:Engineers Australia, Royal Aeronautical Society, 2019: 1-6. |
[39] |
ANSELMO L, PARDINI C. The survivability of space tether systems in orbit around the earth[J]. Acta Astronautica, 2005, 56(3):391-396.
doi: 10.1016/j.actaastro.2004.05.067 |
[40] |
KHAN S B, SANMARTIN J R. Analysis of tape tether survival in LEO against orbital debris[J]. Advances in Space Research, 2014, 53(9):1370-1376.
doi: 10.1016/j.asr.2014.02.008 |
[41] |
LOBANOV L, USTINOV A, VOLKOV V, et al. Al/TiO2 bilayer coatings for space applications: mechanical and thermoradiation properties[J]. Thin Solid Films, 2018, 668:30-37.
doi: 10.1016/j.tsf.2018.10.017 |
[42] |
HIROSAWA H, HIRABAYASHI H, KOBAYASHI H, et al. Space vlbi satellite halca and its engineering accomplishments[J]. Acta Astronautica, 2002, 50(5):301-309.
doi: 10.1016/S0094-5765(01)00171-0 |
[43] |
MEGURO A, SHINTATE K, USUI M, et al. In-orbit deployment characteristics of large deployable antenna reflector onboard engineering test satellite VIII[J]. Acta Astronautica, 2009, 65(9):1306-1316.
doi: 10.1016/j.actaastro.2009.03.052 |
[44] |
QI X, HUANG H, LI B, et al. A large ring deployable mechanism for space satellite antenna[J]. Aerospace Science and Technology, 2016, 58:498-510.
doi: 10.1016/j.ast.2016.09.014 |
[45] |
TANAKA H. Surface error estimation and correction of a space antenna based on antenna gainanalyses[J]. Acta Astronautica, 2011, 68(7/8):1062-1069.
doi: 10.1016/j.actaastro.2010.09.025 |
[46] |
TANG Y, LI T, WANG Z, et al. Surface accuracy analysis of large deployable antennas[J]. Acta Astronautica, 2014, 104(1):125-133.
doi: 10.1016/j.actaastro.2014.07.029 |
[47] |
TANG Y, LI T, MA X. Form finding of cable net reflector antennas considering creep and recovery behaviors[J]. Journal of Spacecraft and Rockets, 2016, 53(4):610-618.
doi: 10.2514/1.A33548 |
[48] | 姜水清, 刘立平. 热刀致动的压紧释放装置研制[J]. 航天器工程, 2005, 14(4):31-34. |
JIANG Shuiqing, LIU Liping. Development of the hold-down and release mechanism using thermal knife[J]. Spacecraft Engineering, 2005, 14(4):31-34. | |
[49] | VANHASSEL R H. The ARA Mark 3 solar array design and development:CP-3328[R]. Washington:NASA, 1996: 119-134. |
[50] | YATES H. The EOS-PM1 solar array[C]// ZWANENBURG R. Proceedings of the Fifth European Space Power Conference (ESPC). Noordwijk:Esa Special Publication, 1998: 557. |
[51] | 曹长明, 关富玲, 黄河, 等. 新型热刀式锁紧释放装置设计与实验[J]. 浙江大学学报 (工学版), 2016, 50(12):2350-2356. |
CAO Changming, GUAN Fuling, HUANG He, et al. Design and test of new thermal knife restraint and release device[J]. Journal of Zhejiang Univer-sity (Engineering Science), 2016, 50(12):2350-2356. | |
[52] | KONINK T. Multipurpose holddown and release mechanism (MHRM)[C]// KESTER G. The 13th European Space Mechanisms and Tribology Sympo-sium(ESTMAS). Madrid:Esa Special Publication, 2009: 1-4. |
[53] | BONGERS E. Robustness improvement of ARA kevlar holddown restraint cables[C]// KONING J, KONINK T. 15th European Space Mechanisms & Tribology Symposium (ESMATS). Noordwijk:Esa Special Publication, 2013: 1-7. |
[54] | 李新立, 姜水清, 刘宾. 热刀式压紧释放装置释放可靠性验证实验及评估方法[J]. 航天器工程, 2012, 21(2):123-126. |
LI Xinli, JIANG Shuiqing, LIU Bin. Release reliability validation tests and evaluation methods for the hold-down and release mechanism using thermal knife[J]. Spacecraft Engineering, 2012, 21(2):123-126. | |
[55] | AUGUSTIJN J, GRIMMINCK M, BONGERS E, et al. Development of a non explosive low shock (NELS) holddown and release system[C]// 16th European Space Mechanisms and Tribology Symposium. Paris:Esa Special Publication, 2015: 1-6. |
[56] | FETTE R B, SOVINSKI M F. Vectran fiber time dependant behavior and additional static loading properties:TM-2004-212773[R]. Greenbelt: NASA, 2004: 1-21. |
[57] | FETE R B. Relaxation of Kevlar braided cords[D]. Washington DC: The George Washington University, 2004:1-42. |
[58] | JONES T, DOGGETT W, STANFIELD C, et al. Accelerated creep testing of high strength aramid webbing:NF1676L-13173[R]. Washington: NASA, 2012: 1-14. |
[59] | 丁许. 二维编织绳拉伸性能实验研究[D]. 天津: 天津工业大学, 2019: 61. |
DING Xu. Experimental study on tensile properties of two-dimensional braided rope[D]. Tianjin: Tiangong University, 2019: 61. | |
[60] | 李伟. Vectran纤维与绳索的蠕变与应力松弛行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2010: 59. |
LI Wei. Research on creep and stress relaxation of Vectran fiber and rope[D]. Harbin: Harbin Institute of Technology, 2010: 59. | |
[61] | JONES T, DOGGETT W. Time-dependent behavior of high strength Kevlar and Vectran webbing:NF1676L-16713[R]. Washington: NASA, 2014: 1-22. |
[62] | KENNER W S. Environmental effects on long term displacement data of woven fabric webbings under constant load for inflatable structures:NF1676L-19010[R]. Reston: NASA, 2015: 1-29. |
[63] | KENNER W S, JONES T C, BOFFE V M L. Controlled environmental effects on creep test data of woven fabric webbings for inflatable space modules:TM-2020-220561[R]. Washington: NASA, 2020:1-12. |
[64] | 杨惠杰. 聚酰亚胺编织绳的热机械变形规律及影响因素[D]. 哈尔滨: 哈尔滨工业大学, 2017: 56. |
YANG Huijie. Thermomechanical deformation of polyimide braided rope and its influencing factors[D]. Harbin: Harbin Institute of Technology, 2017: 56. | |
[65] |
TANG Y, LI T, MA X. Creep and recovery behavior analysis of space mesh structures[J]. Acta Astronautica, 2016, 128(11/12):455-463.
doi: 10.1016/j.actaastro.2016.08.003 |
[66] |
HUANG W, LIU H, LIAN Y, et al. Modeling nonlinear creep and recovery behaviors of synthetic fiber ropes for deepwater moorings[J]. Applied Ocean Research, 2013, 39:113-120.
doi: 10.1016/j.apor.2012.10.004 |
[67] |
LIAN Y, ZHENG J, LIU H, et al. A study of the creep-rupture behavior of HMPE ropes using viscoelastic-viscoplastic-viscodamage modeling[J]. Ocean Engineering, 2018, 162:43-54.
doi: 10.1016/j.oceaneng.2018.05.003 |
[1] | WANG Zexing, LI Shuai, TAN Dongyi, MENG Shuo, HE Bin. Effect of cyclic loading treatment on creep behavior of polyvinyl chloride coated membrane [J]. Journal of Textile Research, 2021, 42(07): 101-107. |
[2] | CHEN Kang, JIANG Quan, JI Hong, ZHANG Yang, SONG Minggen, ZHANG Yumei, WANG Huaping. Temperature related creep rupture mechanism of high-tenacity polyester industrial fiber [J]. Journal of Textile Research, 2020, 41(11): 1-9. |
[3] | WANG Zexing, WU Bo, LI Shuai, HE Bin. Energy dissipation evolution of jute fabric/polyethylene composite under cyclic stress relaxation [J]. Journal of Textile Research, 2020, 41(10): 74-80. |
[4] | . Prediction on creep predictions of polyvinyl chloride coated membrane [J]. Journal of Textile Research, 2018, 39(10): 68-73. |
[5] | . Analysis on components properties of alkali-soluble polyester/polyamide 6 sea island fiber [J]. Journal of Textile Research, 2018, 39(09): 15-21. |
[6] | . Tensile creep characteristics of polyvinyl chloride coated membrane material with damage [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 57-64. |
[7] | LIANG Fangge;CHENG Longdi;LIU Yan;LIU Xiaozhen;SHAO Nan. Study on the stress relaxation mechanism of air jet vortex spun yarns with naturally colored cotton [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(8): 27-29. |
[8] | XIAO Feng;LI Yingjian. Testing and analysis of the creep behavior of spandex core-spun yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(6): 48-51. |
[9] | ZHU Yongyi;LIU Xiaoming;CHEN Nanliang. Mechanical model for the stress relaxationof PVC calendered flexible composites [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(11): 36-39. |
[10] | LIU Baosheng;GU Zhaowen;WANG Qi. Models of mechanical properties of the cross section PTT filament and PET filament [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(10): 4-8. |
[11] | HOU Xiuliang;GAO Weidong;WANG Shanyuan;ZHOU Qicheng. Tensile properties of cashmere fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(10): 18-22. |
[12] | MA Jian-wei;LIU Wei;CHEN Shao-juan. Mechanical properties of functional nano-nylon fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 62-64. |
[13] | ZHANG Tao;BAO Wen-bin;YU Jian-yong . Simulate analysis of mechanical properties of bamboo pulp fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(1): 28-29. |
[14] | LI Ying-jian;XIAO Feng . Creep-capability of soybean protein fiber spandex core-spun yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(1): 78-79. |
|