Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (04): 1-7.doi: 10.13475/j.fzxb.20200908307

• Invited Column: Bio-based Polyester and Polyamide Fiber •     Next Articles

Thermal degradation kinetics and pyrolysis products of bio-based polyamide 56 fiber

YANG Tingting1,2, GAO Yuanbo1,2, ZHENG Yi3, WANG Xueli4, HE Yong1,2,4()   

  1. 1. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    2. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
    3. Cathay Biotech Inc., Shanghai 201203, China
    4. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2020-09-30 Revised:2020-12-23 Online:2021-04-15 Published:2021-04-20
  • Contact: HE Yong E-mail:yhe@dhu.edu.cn

Abstract:

Bio-based polyamide 56 (PA56) fiber was prepared by bio-based 1,5-pentanediamine and petroleum-based 1,6-adipic acid. In order to explore the thermal stability of the new type of bio-based material, the thermal degradation process of the bio-based PA56 fiber were measured under nitrogen at different heating rates, and the thermal degradation kinetic parameters were calculated. In addition, the main pyrolysis gas phase products of bio-based PA56 fiber in the thermal degradation process were analyzed. The results show that the thermal weight loss curve and kinetic parameters of bio-based polyamide 56 fiber are dependent on the heating rates. The activation energy of bio-based PA56 fiber obtained by Kissinger method, Flynn-Wall-Ozawa method and Coasts-Redfern method are 235.00, 217.23 and 232.18 kJ/mol, respectively, suggesting that the thermal degradation mechanism is F1 type. The main pyrolysis gas phase products are CO2, cyclopentanone and 1,5-pentanediamine in the thermal degradation process.

Key words: bio-based polyamide 56 fiber, thermal stability, thermal degradation kinetics, thermal degradation kinetic parameter, pyrolysis gas phase product

CLC Number: 

  • TS151

Fig.1

TG (a) and DTG (b) curves of bio-based PA56 fibers at different heating rates under nitrogen atmosphere"

Fig.2

Plot of ln(β/T2) versus 1/T according to Kissinger method"

Tab.1

Activation energy and correlation coefficient calculated by Kissinger method"

β/(℃·min-1) T/℃ E/(kJ·mol-1) lnA 相关系数R
10 441.0 235.00 32.01 0.994
15 450.4
20 455.0
25 458.2

Fig.3

Plot of lgβ and 1 000/T according to Flynn-Wall-Ozawa method"

Tab.2

Activation energy calculated by Flynn-Wall-Ozawa method"

质量损失率α 斜率 活化能/
(kJ·mol-1)
活化能平均值/
(kJ·mol-1)
0.1 -10.69 194.51 217.23
0.2 -11.77 214.16
0.3 -12.57 228.72
0.4 -12.70 231.09
0.5 -12.45 226.54
0.6 -12.25 222.90
0.7 -12.08 219.81
0.8 -11.76 213.98
0.9 -11.01 200.34

Fig.4

Plot of ln(g(α)/T2) and 1 000/T according to Coasts-Redfern method"

Tab.3

Activation energy and correlation coefficient calculated by Coasts-Redfern method"

动力学机制
类型
g(α) 10 ℃/min 15 ℃/min 20 ℃/min 25 ℃/min
E/(kJ·mol-1) R E/(kJ·mol-1) R E/(kJ·mol-1) R E/(kJ·mol-1) R
A2 (-ln(1-α))12 123.96 0.999 126.61 0.700 116.94 0.997 129.98 0.998
A3 (-ln(1-α))13 86.55 0.999 87.33 0.510 81.95 0.998 90.67 0.998
A4 (-ln(1-α))14 67.85 0.999 67.69 0.364 64.45 0.998 70.01 0.999
R1 α 173.69 0.977 178.22 0.839 162.36 0.960 181.50 0.967
R2 1-(1-α)12 201.87 0.993 208.07 0.876 189.17 0.983 211.43 0.987
R3 1-(1-α)13 212.60 0.996 219.45 0.886 199.40 0.989 222.83 0.992
D1 α2 335.64 0.975 347.67 0.941 312.75 0.957 350.98 0.964
D2 (1-α)ln(1-α)+α 369.84 0.987 383.89 0.956 345.25 0.973 387.26 0.978
D3 (1-(1-α)13)2 413.46 0.996 430.14 0.967 386.84 0.988 433.64 0.991
D4 1-23α-(1-α)23 384.18 0.991 402.21 0.985 358.91 0.979 402.50 0.984
F1 -ln(1-α) 236.19 0.999 222.66 0.999 221.92 0.997 247.93 0.998
F2 1/(1-α) 161.90 0.838 170.21 0.854 155.44 0.873 171.88 0.858
F3 1/(1-α)2 312.08 0.828 330.53 0.845 298.91 0.865 331.74 0.849

Fig.5

Three-dimensional TG-IR spectra of bio-based PA56 fibers under nitrogen atmosphere"

Fig.6

IR spectra of pyrolysis volatiles for bio-based PA56 fibers at different temperatures"

Fig.7

Absorbance of main pyrolysis volatiles for bio-based PA56 fibers versus temperature"

Fig.8

Py-GC/MS chromatograms of PA56 under different pyrolysis temperatures"

Tab.4

Possible pyrolytic compounds of PA56 under different pyrolysis temperatures"

物质
编号
热解气相产物 m/z 不同温度时的相对含量
455 ℃ 500 ℃ 550 ℃
1 CO2 44 11.96 25.35 29.33
吡啶 79 0.35
2 氨基环戊烷 85 0.36
环戊烯 68 1.31
3 环戊酮 84 46.60 40.97 38.78
4 四氢吡啶 83 4.75 7.29
5 1,5-戊二胺 102 25.48 8.58 3.40
6 1H-吲哚-3-甲醛 159 0.74 0.53 0.45
7 7-羟基-1-氮杂环烷-2-酮 185 3.21 4.47 6.13
[1] 胡紫东. 具有创新性和成本竞争力的纺织用生物基聚酰胺[J]. 国际纺织导报, 2016,44(5):12-14.
HU Zidong. Innovative, cost-competitive, bio-based polyamide for textiles[J]. Melliand China, 2016,44(5):12-14.
[2] VYAZOVKIN S, BURNHAM A K, CRIADO J M, et al. Ictac kinetics committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica, 2011,520(1/2):1-19.
[3] KISSINGER H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957,29(11):1702-1706.
[4] OZAWA T. A new method of analyzing thermogravimetric data[J]. Bulletin of the Chemical Society of Japan, 1965,38(11):1881-1886.
[5] SENGUPTA R, SABHARWAL S, BHOWMICK A K, et al. Thermogravimetric studies on polyamide-6,6 modified by electron beam irradiation and by nanofillers[J]. Polymer Degradation and Stability, 2006,91(6):1311-1318.
[6] KUNDU C K, YU B, GANGIREDDY C S R, et al. UV grafting of a dopo-based phosphoramidate monomer onto polyamide 66 fabrics for flame retardant treatment[J]. Industrial & Engineering Chemistry Research, 2017,56(6):1376-1384.
[7] DUEMICHEN E, BRAUN U, STURM H, et al. A new molecular understanding of the thermal degradation of PA66 doped with metal oxides: experiment and computation[J]. Polymer Degradation and Stability, 2015,120:340-356.
[8] 张腾飞, 石禄丹, 胡红梅, 等. 生物基聚酰胺56低聚物改性聚酯的合成及其表征[J]. 纺织学报, 2019,40(6):1-7.
ZHANG Tengfei, SHI Ludan, HU Hongmei, et al. Synjournal and characterization of bio-based polyamide 56 oligomer modified polyester[J]. Journal of Textile Research, 2019,40(6):1-7.
[9] 董奎勇, 杨婷婷, 王学利, 等. 生物基聚酯与聚酰胺纤维的研发进展[J]. 纺织学报, 2020,40(1):174-183.
DONG Kuiyong, YANG Tingting, WANG Xueli, et al. Research and development progress of bio-based polyester and polyamide fibers[J]. Journal of Textile Research, 2020,40(1):174-183.
[10] 潘伟楠, 相恒学, 翟功勋, 等. 共聚酰胺6/66相对分子质量对其结晶和流变性能的影响[J]. 纺织学报, 2019,40(9):8-14.
PAN Weinan, XIANG Hengxue, ZHAI Gongxun, et al. Influence of relative molecular weight of copolyamide 6/66 on crystallization and rheological properties thereof[J]. Journal of Textile Research, 2019,40(9):8-14.
[1] SUN Chaoxu, LIU Xiucai. Research progress on applications of bio-based polyamide 56 fibers in textile fields [J]. Journal of Textile Research, 2021, 42(04): 26-32.
[2] WEN Xin, ZHANG Xuzhen, LI Yong, HUANG Wenjian, LU Chen. Study on water-initiated ring-opening polymerization technology of L-lactide [J]. Journal of Textile Research, 2020, 41(12): 21-25.
[3] ZHAN Xiaoqing, LI Fengyan, ZHAO Jian, LI Haiqiong. Thermal mechanical stability of ultrahigh molecular weight polyethylene fiber [J]. Journal of Textile Research, 2020, 41(08): 9-14.
[4] ZHU Weiwei, CAI Chong, ZHANG Cong, LONG Jiajie, SHI Meiwu. Effect of supercritical CO2 treatment temperature on structure and property of diacetate fiber [J]. Journal of Textile Research, 2020, 41(03): 8-14.
[5] . Preparation and properties of novel modified polyester [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 22-26.
[6] . Influence of flame retardant finishing with silicon-phosphorus hybridization on the structure and thermal stability of wool fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 101-105.
[7] . Oxidation resistance and thermal stability of fatty acid esters lubricant agent in spinning oil [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(04): 68-72.
[8] . Preparation and characterization of low melting point polyamide [J]. Journal of Textile Research, 2016, 37(3): 6-10.
[9] . Thermal degradation behaviors and kinetics of intumescent flame-retardant cotton fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(12): 81-86.
[10] . Modification of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) by epoxy-based chain extenders [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(8): 139-0.
[11] . Influence of oligomer contents on melt spinning process of poly (lactic acid) [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(8): 133-0.
[12] . Effect of UV irradiation on structure and properties of cotton fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(3): 52-0.
[13] . Structure and electric conductive heating performance of silver-plated filament knitted fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(10): 52-0.
[14] LI Lijun;PU Zongyao;LI Feng;WANG Hua;LAN Bin. Thermal degradation kinetics of polyphenylene sulfide fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(12): 4-8.
[15] LI Yongqiang;LIU Jinqiang;SHAO Janzhong. Effects of CF4 LTP-plasma treatment on properties of wool fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(04): 69-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!