Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (04): 16-25.doi: 10.13475/j.fzxb.20201000610

• Invited Column: Bio-based Polyester and Polyamide Fiber • Previous Articles     Next Articles

Research progress on manufacturing technique of bio-based polytrimethylene terephthalate fibers

WANG Shaobo1,2(), XIAO Yang1,2, HUANG Xin1,2, LI Zengbei1,2   

  1. 1. College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
    2. Henan Key Laboratory of Textile Materials, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
  • Received:2020-10-06 Revised:2021-01-12 Online:2021-04-15 Published:2021-04-20

Abstract:

The manufacturing techniques for bio-based polytrimethylene terephthalate fiber involves many disciplines, including microbial fermentation, fermentation product purification, polyester polymerization and spinning processing. In order to provide a relatively comprehensive and clear development in this area, the progress of the technology related to the preparation of bio-based polytrimethylene terephthalate fiber was systematically reviewed and analyzed based on the sequence of production process from raw materials to products, including the preparation of bio-based 1,3-propanediol, the synthesis of bio-based polytrimethylene terephthalate and its spinning processing. The future development trends of this technology were also proposed, including low-cost purification and polymerization by using low-purity bio-based raw materials, differentiated development of high-quality fibers, preparation technology of bio-based terephthalic acid, and the establishment of product environmental footprint evaluation system.

Key words: bio-based synthetic fiber, manufacturing technique for fiber, bio-based 1,3-propanediol, bio-based polytrimethylene terephthalate, fermentation technology, catalytic system

CLC Number: 

  • TQ342

Fig.1

Pathway of 1,3-propanediol production from petro-based material. (a)Catalytic hydroformylation of ethylene oxide; (b)Catytic hydroformylation of acrolein"

Fig.2

Core pathway of 1,3-propanediol production by microbial fermentation"

Fig.3

Synthetic pathway of bio-based PTT"

Tab.1

Spinning parameters comparision of SDY and SAY of bio-based PTT"

纺丝
工艺
纺丝温度/
冷却
方式
温度/℃ 线速度/(m·min-1) 卷绕张力/
(cN·dtex-1)
一辊 二辊 三辊 卷绕辊 一辊 二辊 三辊 卷绕辊
SDY 245~285 风冷 85~160 125~195 15~35 15~35 2 600~4 000 4 000~5 200 4 000~5 000 4 000~5 000 0.036~0.110
SAY 245~285 风冷 90~165 15~35 15~35 3 500~4 000 3 800~4 200 3 800~4 200 0.045~0.073
[1] Life cycle assessment validates Dupont sorona sustainability [EB/OL]. (2016-04-25) [2020-09-30]. http://sorona.com.
[2] 1,3-propanediol (PDO) market-global forecast to 2025[EB/OL].(2020-07-01) [2020-09-30]. https://www.marketsandmarkets.com.
[3] 韩克星. 1,3-丙二醇生产工艺的对比及选择[J]. 化工设计通讯, 2019,45(8):64-65, 90.
HAN Kexing. Comparison and selection of 1,3-propanediol production processes[J]. Chemical Engineering Desigin Communication, 2019,45(8):64-65, 90.
[4] WANG Jia, YANG Man, WANG Aiqin. Selective hydrogenolysis of glycerol to 1,3-propanediol over Pt-W based catalysts[J]. Chinese Journal of Catalysis, 2020,41(9):1311-1319.
[5] EMPTAGE Mark, HAYNIE Sharon, LAFFEND Lisa, et al. Process for the biological production of 1,3-propanediol with high titer: US20060121588 [P]. 2006-06-08.
[6] JIN Pin, LI Shuang, LU Shengguo, et al. Improved 1,3-propanediol production with hemicellulosic hydrolysates (corn straw) as cosubstrate: impact of degradation products on Klebsiella pneumoniae growth and 1,3-propanediol fermentation[J]. Bioresource Technology, 2011,102(2):1815-1821.
doi: 10.1016/j.biortech.2010.09.048 pmid: 21036601
[7] XIN Bo, WANG Yu, TAO Fei, et al. Co-utilization of glycerol and lignocellulosic hydrolysates enhances anaerobic 1,3-propanediol production by Clostridum diolis[J]. Scientific Reports, 2016,6:19044.
doi: 10.1038/srep19044 pmid: 26750307
[8] 王冬祥, 王晨, 王世杰, 等. 粗甘油高值化利用研究现状及发展趋势[J]. 化工进展, 2020,39(8):3041-3048.
WANG Dongxiang, WANG Chen, WANG Shijie, et al. Research status and development trend of high-value utilization of crude glycerol[J]. Chemical Industry and Engineering Progress, 2020,39(8):3041-3048.
[9] PFLIGL Stefan, MARX Hans, MATTANOVICH Diethard, et al. Heading for an economic industrial upgrading of crude glycerol from biodiesel production to 1,3-propanediol by Lactobacillus diolivorans[J]. Bioresource Technology, 2014,152:499-504.
doi: 10.1016/j.biortech.2013.11.041 pmid: 24333679
[10] VIVEK N, CHRISTOPHER M, KUMAR M K, et al. Pentose rich acid pretreated liquor as co-substrate for 1,3-propanediol production[J]. Renewable Energy, 2017,129:794-799.
[11] LOUREIRO-PINTO Marina, COCA Monica, GONZALEZ-BENITO Gerardo, et al. Continuous bioproduction of 1,3-propanediol from biodiesel raw glycerol: operation with free and immobilized cells of clostridium butyricum DSM 10702[J]. The Canadian Journal of Chemical Engineering, 2017,95(5):819-826.
[12] ZHOU Sheng, LI Lili, PERSEKE Marleen, et al. Isolation and characterization of a Klebsiella pneumoniae strain from mangrove sediment for efficient biosynjournal of 1,3-propanediol[J]. Science Bulletin, 2015,60(5):511-521.
[13] LIN Jie, ZHANG Yongqiang, XU Danfeng, et al. Deletion of poxB, pta, and ackA improves 1,3-propanediol production by Klebsiella pneumoniae[J]. Applied Microbiology & Biotechnology, 2016,100(6):2775-2784.
pmid: 26695159
[14] CHEN Lifei, MA Chunling, WANG Ruiming, et al. Deletion of ldhA and aldH genes in Klebsiella pneumoniae to enhance 1,3-propanediol production[J]. Biotechnology Letters, 2016,38(10):1769-1774.
doi: 10.1007/s10529-016-2155-7 pmid: 27341834
[15] 韩冰. 生物安全变栖克雷伯氏菌及其在1,3-丙二醇生产中的应用: 201710680310.6[P]. 2019-09-24.
HAN Bing. Biosafety Klebsiella mutants and its application in the production of 1,3-propanediol: 201710680310.6[P]. 2019-09-24.
[16] 韩冰. 强化表达citT基因的克雷伯氏菌及其生产1,3-丙二醇的应用: 201710680961.5[P]. 2020-01-24.
HAN Bing. Klebsiella with enhanced expression of citT gene and its application in the production of 1,3-propanediol: 201710680961.5[P]. 2020-01-24.
[17] DURGAPAL Meetu, KUMAR Vinod, YANG Taek Ho, et al. Production of 1,3-propanediol from glycerol using the newly isolated Klebsiella pneumoniae J2B[J]. Bioresource Technology, 2014,159:223-231.
doi: 10.1016/j.biortech.2014.01.126 pmid: 24657752
[18] MOSCOVIZ Roman, FOUCHECOUR Florencede, SANTA-GATALINA Gaelle, et al. Cooperative growth of Geobacter sulfurreducens and Clostridium pasteurianum with subsequent metabolic shift in glycerol fermenta-tion[J]. Scientific Reports, 2017,7:44334.
doi: 10.1038/srep44334 pmid: 28287150
[19] 李晓姝, 张霖, 高大成, 等. 发酵法生产1,3-丙二醇的研究进展[J]. 化工进展, 2017,36(4):1395-1403.
LI Xiaoshu, ZHANG Lin, GAO Dacheng, et al. Progress on the production of 1,3-propanediol by fermentation[J]. Chemical Industry and Engineering Progress, 2017,36(4):1395-1403.
[20] 彭文博, 朱传柳, 王道龙, 等. 膜集成技术在1,3-丙二醇精制中的应用[J]. 膜科学与技术, 2019,39(6):119-123.
PENG Wenbo, ZHU Chuanliu, WANG Daolong, et al. Application of membrane integration technology in the purification of 1,3-propanediol[J]. Membrane Science and Technology, 2019,39(6):119-123.
[21] 王继艳, 滕虎, 修志龙. 微生物法生产1,3-丙二醇不同分离工艺的生产成本分析[J]. 化工进展, 2012,31(1):35-40.
WANG Jiyan, TENG Hu, XIU Zhilong. Cost analysis on three separation processes in microbial production of 1,3-propanediol[J]. Chemical Industry and Engineering Process, 2012,31(1):35-40.
[22] ADKESSON D N, ALSOP A W, AMES T T, et al. Purification of biologically-produced 1,3-propanediol: US8183417[P]. 2012-05-22.
[23] 罗吉安, 石国柱, 方建军, 等. 1,3-丙二醇四塔精馏提纯工艺优化[J]. 化工设计通讯, 2018,44(7):77-78.
LUO Jian, SHI Guozhu, FANG Jianjun, et al. Optimization of 1,3-propanediol extraction process by distillation[J]. Chemical Engineering Design Communications, 2018,44(7):77-78.
[24] 陈恩庆, 陈克权, 瞿中凯, 等. 制造聚对苯二甲酸丙二醇酯的方法: 01132140.7[P]. 2004-08-11.
CHEN Enqing, CHEN Kequan, QU Zhongkai, et al. Method for manufacturing polytrimethylene terephthalate: 01132140.7[P]. 2004-08-11.
[25] 王晶晶, 祁捷斐, 陈敬樱, 等. 半芳香族聚酯环状低聚物研究进展[J]. 合成纤维工业, 2019,42(4):65-71.
WANG Jingjing, QI Jiefei, CHEN Jingying, et al. Research progress of cyclic oligomers in semiaromatic polyesters[J]. China Synthetic Fiber Industry, 2019,42(4):65-71.
[26] 宁飞翔, 王少博, 艾丽, 等. 生物基聚对苯二甲酸丙二醇酯的非等温热降解动力学研究[J]. 合成纤维工业, 2019,42(5):31-36.
NING Feixiang, WANG Shaobo, AI Li, et al. Non-isothermal degradation kinetics of bio-based polytrimethylene terephthalate[J]. China Synthetic Fiber Industry, 2019,42(5):31-36.
[27] 朱欢银, 张才亮, 冯连芳, 等. 生物基1,3-丙二醇中微量杂质的气相色谱-质谱分析法[J]. 现代化工, 2020,40(1):220-224, 229.
ZHU Huanyin, ZHANG Cailiang, FENG Lianfang, et al. Analytical method for trace impurity in bio-based 1,3-propanediol by gas chromatography-mass spectro-metry[J]. Modern Chemical Industry, 2020,40(1):220-224, 229.
[28] JIA Shuyong, REN Yurong, ZHANG Dan, et al. Stannous oxalate: an efficient catalyst for poly(trimethylene terephthalate) synjournal[J]. Science in China Series B: Chemistry, 2008,51(3):257-262.
[29] KUO Tungying, HUANG Jihchen, LIAO Chienshiun, et al. Poly(1,3-propylene therephthalate): US5872204[P]. 1999-02-16.
[30] 成娟, 李旭, 望月克彦. 一种聚酯的制备方法: 201110436181.9[P]. 2013-06-26.
CHENG Juan, LI Xu, WANG Yuekeyan. The invention relates to a method for preparing polyester: 201110436181.9[P]. 2013-06-26.
[31] 王少博, 王华平, 岳献阳, 等. 一种PTT基低熔点共聚酯的制备方法: 201811329369.1[P]. 2019-04-05.
WANG Shaobo, WANG Huaping, YUE Xianyang, et al. A method for preparing PTT-based low melting point copolyester: 201811329369.1[P]. 2019-04-05.
[32] 宋歌, 熊金根, 周芬, 等. 生产聚对苯二甲酸丙二醇酯的催化剂及其制备方法和应用: 201610906686.X [P]. 2018-04-27.
SONG Ge, XIONG Jingen, ZHOU Fen, et al. Catalyst for producing poly(trimethylene terephthalate) and its preparation method and application: 201610906686.X[P]. 2018-04-27.
[33] LI Xingui, SONG Ge, HUANG Meirong. Cost-effective sustainable synjournal of high-performance high-molecular-weight poly(trimethylene terephthalate) by eco-friendly and highly active Ti/Mg catalysts[J]. ACS Sustainable Chemistry & Engineering, 2017,5(3):2181-2195.
[34] 高庆龙, 朱志庆, 沈卫华, 等. Ti-Mg复合催化剂合成聚对苯二甲酸1,3-丙二醇酯[J]. 应用化工, 2019,48(11):2538-2541, 2545.
GAO Qinglong, ZHU Zhiqing, SHEN Weihua, et al. Synjournal of poly(trimethylene terephthalate) catalyzed by Ti-Mg composite catalyst[J]. Applied Chemical Industry, 2019,48(11):2538-2541, 2545.
[35] 王玉龙. 三釜流程合成PTT工业化试生产[J]. 石油化工技术经济, 2007,5:28-30.
WANG Yulong. Pilot industrial production of PTT with three autoclaves process[J]. Techno-Economic in Petrochemicals, 2007,5:28-30.
[36] 吉鹏, 王华平, 王朝生, 等. 一种PTT聚酯或共聚酯及其制备方法: 201810489278.8[P]. 2020-04-17.
JI Peng, WANG Huaping, WANG Chaosheng, et al. PTT polyester or copolyester and preparation method: 201810489278.8[P]. 2020-04-17.
[37] MOON Jungme, KIM Taeyoung. Continuous process for producing poly(trimethylene terephthalate) containing low levels of by-products: US10280257[P]. 2019-05-07.
[38] WANG Guoqiang, MIN Jiang, QIANG Zhang, et al. New bio-based copolyesters poly(trimethylene 2,5-thiophenedicarboxylate-co-trimethylene terephthalate): synjournal, crystallization behavior, thermal and mechanical properties[J]. Polymer, 2019,173:27-33.
[39] 吉鹏, 王华平, 王朝生, 等. 一种阳离子改性PTT共聚酯纤维的制备方法: 201810489246.8[P]. 2020-05-12.
JI Peng, WANG Huaping, WANG Chaosheng, et al. A preparation method of cationic modified PTT copolyester fiber: 201810489246.8[P]. 2020-05-12.
[40] 邹家熊, 陈康, 于金超, 等. 一种抗菌聚酯的制备方法: 201810106314.8[P]. 2019-11-26.
ZOU Jiaxiong, CHEN Kang, YU Jinchao, et al. Preparation method of antibacterial polyester: 201810106314.8[P]. 2019-11-26.
[41] SCHEIRS J, LONG T. Modern polyesters: chemistry and technology of polyesters and copolyesters[M]. Chichester: John Wiley & Sons Ltd, 2004: 370-379.
[42] 胡婷婷. 大直径皮芯型复合单丝成形工艺及性能的研究[D]. 上海: 东华大学, 2012: 14-18.
HU Tingting. The study of forming process and properties of PTT/PET skin-core composite monofilament with large diameter[D]. Shanghai: Donghua University, 2012: 14-18.
[43] 华金祥. PTT/PET并列型复合长丝国产设备及相关工艺的探讨[J]. 纺织机械, 2015,12(12):78-81.
HUA Jinxiang. Discussion on domestic equipment and related process of PTT/PET side-by-side composite filament[J]. Textile Machinery, 2015,12(12):78-81.
[44] HUANG Jiehming, CHANG Fengchih. Crystallization kinetics of poly(trimethylene terephthalate)[J]. Journal of Polymer Science Part B: Polymer Physics, 2000,38(7):934-941.
[45] 陈玉君, 侯巩. 聚对苯二甲酸丙二酯的热降解性能研究[J]. 聚酯工业, 2005,2:27-30.
CHEN Yujun, HOU Gong. Study on heat degradation of polytirm ethylene terephate[J]. Polyester Industry, 2005,2:27-30.
[46] 吉鹏, 王华平, 王朝生, 等. 一种低阻尼聚酯负压熔融纺丝成形方法: 201611004381.6[P]. 2018-10-23.
JI Peng, WANG Huaping, WANG Chaosheng, et al. A low resistance polyester negative pressure melt spinning method: 201611004381.6[P]. 2018-10-23.
[47] DING Zhuomin. Spinning poly(trimethylene terephthalate) yarns: US7785709[P]. 2010-08-31.
[48] DING Z, LONDON J, JOE F. Spin annealed poly(trimethylene terephthalate) yarn: US7005093[P]. 2006-02-28.
[49] 孙君, 熊喜科, 戴礼兴. 交替张力热处理对聚对苯二甲酸丙二醇酯纤维弹性的提升[J]. 高分子材料科学与工程, 2019,35(12):93-98.
SUN Jun, XIONG Xike, DAI Lixing. Increase of elasticity of poly(trimethylene terephthalate) fiber through heat-treatment with alternating tension[J]. Polymer Materials Science & Engineering, 2019,35(12):93-98.
[50] HERNANDEZ I A, HIETPAS G D, HOWELL J M, et al. Process for making poly(trimethylene terephthalate) staple fibers, and poly(trimethylene terephthalate) staple fibers, yarns and fabrics: US20020071951[P]. 2002-06-13.
[51] HIN Chuah. Process for preparing poly(trimethylene terephthalate) carpet yarn: US6254961[P]. 2001-07-03.
[52] 张须臻, 杨一格, 刘少波, 等. PET/PTT并列复合纤维制备工艺对其结构与性能的影响[J]. 合成纤维, 2020,49(3):1-6.
ZHANG Xuzhen, YANG Yige, LIU Shaobo, et al. Effect of preparation technology on structure and properties of PET/PTT composite fiber[J]. Synthetic Fiber in China, 2020,49(3):1-6.
[53] 杨竹丽, 王府梅. PTT/PET并列复合丝两组分结合牢度的关键因素[J]. 东华大学学报(自然科学版), 2015,41(6):760-766.
YANG Zhuli, WANG Fumei. Key factor affecting binding tightness between two components of PTT/PET side-by-side filaments[J]. Journal of Donghua Univer-sity (Natural Science), 2015,41(6):760-766.
[54] 严建华, 韩冰, 吉鹏, 等. 一种消光聚酯及低光泽度弹性复合纤维: 201710873444.X[P]. 2018-01-30.
YAN Jianhua, HAN Bing, JI Peng, et al. A dull polyester and low gloss elastic composite fiber: 201710873444.X[P]. 2018-01-30.
[55] 钱伯章. 我国开发出PTT纤维成套工艺技术[J]. 合成纤维工业, 2014,37(4):45.
QIAN Bozhang. China has developed a complete set of PTT fiber technology[J]. China Synthetic Fiber Industry, 2014,37(4):45.
[56] 纺织检测与标准编辑部. 美景荣“二十万吨/年PTT聚合纺丝一体化项目”启航[J]. 纺织检测与标准, 2017,3(2):54.
Editorial Department of Textile Testing and Standard. Glory Co Ltd "200 000 t/a PTT polymerization spinning integration project" set sail[J]. Textile Testing and Standard, 2017,3(2):54.
[57] NAKAJIMA Hajime, DIJKSTRA Peter, LOOS Katja. The recent developments in biobased polymers toward general and engineering applications: polymers that are upgraded from biodegradable polymers, analogous to petroleum-derived polymers, and newly developed[J]. Polymers, 2017,9(10):523.
doi: 10.3390/polym9100523
[58] 权家友. Anellotech:生产100%生物基对二甲苯迈出重要一步[J]. 国际纺织导报, 2019,47(7):8.
QUAN Jiayou. Anellotech: an important step has been taken in the production of 100% biologically based p-xylene[J]. Melliand China, 2019,47(7):8.
[59] 白京羽, 林晓锋, 尹政清, 等. 全球生物产业发展现状及政策启示[J]. 生物工程学报, 2020,36(8):1528-1535.
pmid: 32924351
BAI Jingyu, LIN Xiaofeng, YIN Zhengqing, et al. Status quo of global bioindustry and its policy implications[J]. Chinese Journal of Biotechnology, 2020,36(8):1528-1535.
doi: 10.13345/j.cjb.200260 pmid: 32924351
[60] 徐艳, 刘娟, 顾江源, 等. 产品环境足迹: 新的潜在绿色贸易壁垒[J]. 环境可持续发展, 2019,44(6):123-125.
XU Yan, LIU Juan, GU Jiangyuan, et al. Product environmental footprint: new potential green trade barriers[J]. Environment and Sustainable Development, 2019,44(6):123-125.
[1] LI Yonghe, QU Lingxi, XU Bi, CAI Zaisheng, GE Fengyan. One-step foam finishing of flame retardancy and three-proof finishing for bio-based polytrimethylene terephthalate fabrics [J]. Journal of Textile Research, 2021, 42(04): 8-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!