Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (09): 170-179.doi: 10.13475/j.fzxb.20201000910

• Comprehensive Review • Previous Articles     Next Articles

Research progress of antibacterial materials for textiles and their applications

ZHAI Lisha, WANG Zonglei, ZHOU Jingyi, GAO Chong, CHEN Fengxiang(), XU Weilin   

  1. State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2020-10-06 Revised:2021-04-06 Online:2021-09-15 Published:2021-09-27
  • Contact: CHEN Fengxiang E-mail:fxchen_czx@wtu.edu.cn

Abstract:

With the advancement of science and technology and the improvement of people's living standards, especially when combating the further spread of SARS-CoV-2 in the world, higher requirements for functional antibacterial textiles have to be put forward. This paper reviews the common antibacterial materials and their anti-bacterial mechanisms and the research progress in antibacterial finishing agents in the textile field. The development direction of antibacterial finishing agents and antibacterial textiles were recommended in four aspects: the selectivity and efficiency of antibacterial finishing agents, the safety of antibacterial textiles, the wearability and durability of antibacterial textiles, and the hysteresis and standardization of antibacterial textile testing standards, in order to provide theoretical basis for the development of antibacterial textiles and upgrade the functional antibacterial textiles.

Key words: antibacterial textiles, antibacterial finishing agent, antibacterial mechanism, wearability, security

CLC Number: 

  • TS195.2
[1] LI Q, GUAN X H, WU P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia[J]. New England Journal of Medicine, 2020, 382:1199-1207.
doi: 10.1056/NEJMoa2001316
[2] CALLEWAERT C, MAESENEIRE E D, KERCKHOF F M, et al. Microbial odor profile of polyester and cotton clothes after a fitness session[J]. Applied and Environmental Microbiology, 2014, 80(21):6611-6619.
doi: 10.1128/AEM.01422-14
[3] RODRIGUEZ C, CARA A D, RENAUD F N R. et al. Antibacterial effects of photocatalytic textiles for footwear application[J]. Catalysis Today, 2014, 230:41-46.
doi: 10.1016/j.cattod.2013.12.023
[4] NORDSTROM J M, REYNOLDS K A, GERBA C P. Comparison of bacteria on new, disposable, laundered, and unlaundered hospital scrubs[J]. American Journal of Infection Control, 2012, 40(6):539-543.
doi: 10.1016/j.ajic.2011.07.015
[5] FIJAN S, TURK S Š. Hospital textiles, are they a possible vehicle for healthcare-associated infections?[J]. International Journal of Environmental Research and Public Health, 2012, 9(9):3330-3343.
doi: 10.3390/ijerph9093330
[6] YANG Z C, WANG B C, YANG X S, et al. The synergistic activity of antibiotics combined with eight traditional Chinese medicines against two different strains of Staphylococcus aureus[J]. Colloids and Surfaces B: Biointerfaces, 2005, 41(2/3):79-81.
doi: 10.1016/j.colsurfb.2004.10.033
[7] REN X, KOU L, KOCER H B, et al. Antimicrobial coating of an N-halamine biocidal monomer on cotton fibers via admicellar polymerization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317(1/3):711-716.
doi: 10.1016/j.colsurfa.2007.12.007
[8] DASTJERDI R, MONTAZER M, SHAHSAVAN S. A new method to stabilize nanoparticles on textile surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 345(1/3):202-210.
doi: 10.1016/j.colsurfa.2009.05.007
[9] WIENER-WELL Y, GALUTY M, RUDENSKY B, et al. Nursing and physician attire as possible source of nosocomial infections[J]. American Journal of Infection Control, 2011, 39(7):555-559.
doi: 10.1016/j.ajic.2010.12.016
[10] CHEN Q, SHEN X, GAO H. One-step synjournal of silver-poly (4-vinylpyridine) hybrid microgels by γ-irradiation and surfactant-free emulsion polymerization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 275(1/3):45-49.
doi: 10.1016/j.colsurfa.2005.09.016
[11] DIMITROV D S. Interactions of antibody-conjugated nanoparticles with biological surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006 (282/283):8-10.
[12] GAO Y, CRANSTON R. Recent advances in antimicrobial treatments of textiles[J]. Textile Research Journal, 2008, 78(1):60-72.
doi: 10.1177/0040517507082332
[13] KENAWY E R, ABDEL-FATTAH Y R. Antimicrobial properties of modified and electro-spun poly (vinyl phenol)[J]. Macromolecular Bioscience, 2002, 2(6):261-266.
doi: 10.1002/1616-5195(200208)2:6<261::AID-MABI261>3.0.CO;2-2
[14] LALA N L, RAMASESHAN R, BOJUM L, et al. Fabrication of nanofibers with antimicrobial functionality used as filters: protection against bacterial contaminants[J]. Biotechnology and Bioengineering, 2007, 97(6):1357-1365.
doi: 10.1002/(ISSN)1097-0290
[15] MA M, SUN Y, SUN G. Antimicrobial cationic dyes: part 1: synjournal and characterization[J]. Dyes and Pigments, 2003, 58(1):27-35.
doi: 10.1016/S0143-7208(03)00025-1
[16] PERELSHTEIN I, APPLEROT G, PERKST N, et al. Sonochemical coating of silver nanoparticles on textile fabrics(nylon, polyester and cotton) and their antibacterial activity[J]. Nanotechnology, 2008, 19(24):245705.
doi: 10.1088/0957-4484/19/24/245705
[17] DIZ M, INFANTE M R, ERRA P, et al. Antimicrobial activity of wool treated with a new thiol cationic surfactant[J]. Textile Research Journal, 2001, 71(8):695-700.
doi: 10.1177/004051750107100808
[18] SEONG H S, KIM J P, KO S W. Preparing chito-oligosaccharides as antimicrobial agents for cotton[J]. Textile Research Journal, 1999, 69(7):483-488.
doi: 10.1177/004051759906900704
[19] 刘伟时. 抗菌纤维的发展及抗菌纺织品的应用[J]. 化纤与纺织技术, 2011, 40(3):22-27.
LIU Weishi. Development of antimicrobial fiber and application of antimicrobial textiles[J]. Chemical Fiber and Textile Technology, 2011, 40(3):22-27.
[20] DESAI K, KIT K. Effect of spinning temperature and blend ratios on electrospun chitosan/poly(acrylamide) blends fibers[J]. Polymer, 2008, 49(19):4046-4050.
doi: 10.1016/j.polymer.2008.07.012
[21] WEN Y, ZHAO R, YIN X, et al. Antibacterial and antioxidant composite fiber prepared from polyurethane and polyacrylonitrile containing tea polyphenols[J]. Fibers and Polymers, 2020, 21(1):103-110.
doi: 10.1007/s12221-020-9497-4
[22] ONAR N, AKSIT A C, SEN Y, et al. Antimicrobial, UV-protective and self-cleaning properties of cotton fabrics coated by dip-coating and solvothermal coating methods[J]. Fibers & Polymers, 2011, 12(4):461-470.
[23] WANG L, XI G H, WAN S J, et al. Asymmetrically superhydrophobic cotton fabrics fabricated by mist polymerization of lauryl methacrylate[J]. Cellulose, 2014, 21(4):2983-2994.
doi: 10.1007/s10570-014-0275-6
[24] ROCKY B P, THOMPSON A J. Investigation and comparison of antibacterial property of bamboo plants, natural bamboo fibers and commercial bamboo viscose textiles[J]. The Journal of The Textile Institute, 2020: 112(7):1807300.
[25] XU X X, GONG J X, ZHANG T, et al. Insights into antibacterial mechanism of Apocynum venetum L fiber: evolution of bioactive natural substances in bast during chemical degumming process[J]. Industrial Crops and Products, 2020, 151:112419.
doi: 10.1016/j.indcrop.2020.112419
[26] YUAN W Q, HAN X, WU Y, et al. Composition and antimicrobial activity of bamboo (phyllostachys heterocycla cv pubescens) leaf hydrosols[J]. Current Topics in Nutraceutical Research, 2020, 18(2):207-220.
doi: 10.37290/ctnr2641-452X.18:207-219
[27] HAI A M, AHMED M, AFZAL A, et al. Characterization and antibacterial property of Kapok fibers treated with chitosan/AgCl-TiO2 colloid[J]. The Journal of The Textile Institute, 2019, 110(1):100-104.
doi: 10.1080/00405000.2018.1466629
[28] 张洁. 麻类纤维天然抑菌性能研究[D]. 上海:东华大学, 2018: 11.
ZHANG Jie. Study on natural antibacterial properties of hempfiber[D]. Shanghai:Donghua University, 2018: 11.
[29] 严小飞, 王茜, 周梦岚, 等. 木棉纤维抗菌性及抗菌机理分析[J]. 棉纺织技术, 2015, 43(3):15-18.
YAN Xiaofei, WANG Qian, ZHOU Menglan, et al. Analysis of antibacterial property and antibacterial mechanism of kapok fiber[J]. Cotton Textile Technology, 2015, 43(3):15-18.
[30] KIM J S. Natural dyeing properties and antibacterial activities of fabrics dyed with mordant: focused on Gardenia, Scutellaria, Houttuynia, Phellodendron[J]. The Journal of the Korea Society of Art and Design, 2015, 18(3):222-235.
[31] PAWLOWAKA K A, HALASA R, DUDEK M K, et al. Antibacterial and anti-inflammatory activity of bistort (Bistorta officinalis) aqueous extract and its major components. Justification of the usage of the medicinal plant material as a traditional topical agent[J]. Journal of Ethnopharmacology, 2020, 260:113077.
doi: 10.1016/j.jep.2020.113077
[32] SHARMA P, WICHAPHON J, KLANGPETCH W. Antimicrobial and antioxidant activities of defatted Moringa oleifera seed meal extract obtained by ultrasound-assisted extraction and application as a natural antimicrobial coating for raw chicken sausages[J]. International Journal of Food Microbiology, 2020, 332:108770.
doi: 10.1016/j.ijfoodmicro.2020.108770
[33] AGHAMOHAMADI N, SANJANI N S, MAJIDI R F, et al. Preparation and characterization of Aloe vera acetate and electrospinning fibers as promising antibacterial properties materials[J]. Materials Science and Engineering: C, 2019, 94:445-452.
doi: 10.1016/j.msec.2018.09.058
[34] DUAN P, XU Q, ZHANG X, et al. Naturally occurring betaine grafted on cotton fabric for achieving antibacterial and anti-protein adsorption functions[J]. Cellulose, 2020, 27:6603-6615.
doi: 10.1007/s10570-020-03228-0
[35] BHUIYAN M A R, HOSSAIN M A, ZAKARIA M, et al. Chitosan coated cotton fiber: physical and antimicrobial properties for apparel use[J]. Journal of Polymers and the Environment, 2016, 25(2):334-342.
doi: 10.1007/s10924-016-0815-2
[36] BHUIYAN M A R, HOSSAIN M A, ZAKARIA M, et al. Chitosan coated cotton fiber: physical and antimicrobial properties for apparel use[J]. Journal of Polymers and the Environment, 2017, 25(2):334-342.
doi: 10.1007/s10924-016-0815-2
[37] BENLTONFA S, MILED W, TRAD M, et al. Chitosan hydrogel-coated cellulosic fabric for medical end-use: antibacterial properties, basic mechanical and comfort properties[J]. Carbohydrate Polymers, 2020, 227:115352.
doi: 10.1016/j.carbpol.2019.115352
[38] LIU Y, XIAO C, LI X, et al. Antibacterial efficacy of functionalized silk fabrics by radical copolymerization with quaternary ammonium salts[J]. Journal of Applied Polymer Science, 2016, 133(21):43450.
[39] 李丽, 顾嫒娟. 聚丙烯腈/季铵盐纳米抗菌纤维滤膜的研究[J]. 涂层与防护, 2019, 40(12):24-28,34.
LI Li, GU Aijuan. Study on nanometer antimicrobial fiber membrane of polyacrylonitrile/quaternary ammonium salt[J]. Coating and Protection, 2019, 40(12):24-28,34.
[40] ZHANG Y, HE X, DING M, et al. Antibacterial and biocompatible cross-linked waterborne polyurethanes containing gemini quaternary ammonium salts[J]. Biomacromolecules, 2018, 19(2):279-287.
doi: 10.1021/acs.biomac.7b01016
[41] FAN X, YIN M, JIANG Z, et al. Antibacterial poly (3-hydroxybutyrate-co-4-hydroxybutyrate) fibrous membranes containing quaternary ammonium salts[J]. Polymers for Advanced Technologies, 2016, 27(12):1617-1624.
doi: 10.1002/pat.v27.12
[42] 钱逢宜, 李蓉, 任学宏. 抗菌疏水棉织物的制备及性能研究[J]. 功能材料, 2020, 51(1):28-32.
QIAN Fengyi, LI Rong, REN Xuehong. Preparation and properties of antibacterial and hydrophobic cotton fabrics[J]. Functional Materials, 2020, 51(1):28-32.
[43] LUO G, XI G, WANG X, et al. Antibacterial N-halamine coating on cotton fabric fabricated using mist polymerization[J]. Journal of Applied Polymer Science, 2017, 134(22):44897.
[44] LU Z, MENG M, JIANG Y, et al. UV-assisted in situ synjournal of silver nanoparticles on silk fibers for antibacterial applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 447:1-7.
doi: 10.1016/j.colsurfa.2014.01.064
[45] BARNABAS J, MIRAFTAB M, QINAND Y, et al. Evaluating the antibacterial properties of chitosan fibres embedded with copper ions for wound dressing applications[J]. Journal of Industrial Textiles, 2014, 44(2):232-244.
doi: 10.1177/1528083713483782
[46] ALSOHAIMI I H, NASSAR A M, ELNASR T A S. et al. A novel composite silver nanoparticles loaded calcium oxide stemming from egg shell recycling: a potent photocatalytic and antibacterial activities[J]. Journal of Cleaner Production, 2020, 248:119274.
doi: 10.1016/j.jclepro.2019.119274
[47] NASKAR A, LEE S, LEE Y, et al. A new nano-platform of erythromycin combined with Ag nano-particle ZnO nano-structure against methicillin-resistant staphylococcus aureus[J]. Pharmaceutics, 2020, 12(9):841.
doi: 10.3390/pharmaceutics12090841
[48] TAN L Y, SIN L T, BEE S T, et al. Functionalization and mechanical properties of cotton fabric with ZnO nanoparticles for antibacterial textile application[J]. Solid State Phenomena, 2019, 290:292-297.
doi: 10.4028/www.scientific.net/SSP.290
[49] MENG M, HE H, XIAO J, et al. Controllable in situ synjournal of silver nanoparticles on multilayered film-coated silk fibers for antibacterial application[J]. Journal of Colloid Interface Science, 2015, 461:369-375.
doi: 10.1016/j.jcis.2015.09.038
[50] 刘菁, 张建强, 邓苗. 沸石载银制备抗菌剂的研究[J]. 非金属矿, 2011, 34(2):22-24.
LIU Jing, ZHANG Jianqiang, DENG Miao. Preparation of antibacterial agent by carrying silver in zeolite[J]. Non-Metallic Mines, 2011, 34(2):22-24.
[51] DU L, JIN C, CHENG Y, et al. Improvement of antibacterial activity of hydrothermal treated TC4 substrate through an in-situ grown TiO2/g-C3N4 Z-scheme heterojunction film[J]. Journal of Alloys and Compounds, 2020, 842:155612.
doi: 10.1016/j.jallcom.2020.155612
[52] LIU S, WEN B, JIANG X, et al. Enhanced photocathodic antifouling/antibacterial properties of polyaniline-Ag-N-doped TiO2 coatings[J]. Journal of Materials Science, 2020, 55:16255-16272.
doi: 10.1007/s10853-020-05170-9
[53] DOUMBIA A S, VEZIN H, FERREIRA M, et al. Studies of polylactide/zinc oxide nanocomposites: influence of surface treatment on zinc oxide antibacterial activities in textile nanocomposites[J]. Journal of Applied Polymer Science, 2015, 132(17):41776.
[54] RILDFA Y, SAFITRI R, AGUSTIEN A, et al. Enhancement of antibacterial capability of cotton textiles coated with TiO2-SiO2/chitosan using hydrophobization[J]. Journal of the Chinese Chemical Society, 2017, 64(11):1347-1353.
doi: 10.1002/jccs.2017.64.issue-11
[55] SAFFARI MR, KAMALI MR. Antibacterial property of PLA textiles coated by nano-TiO2 through eco-friendly low-temperature plasma[J]. International Journal of Clothing Science and Technology, 2016, 28(6):830-840.
doi: 10.1108/IJCST-12-2015-0139
[56] RILDA Y, DAMARA D, PUTRI Y E, et al. Pseudomonas aeruginosa antibacterial textile cotton fiber construction based on ZnO-TiO2 nanorods template[J]. Heliyon, 2020, 6(4):e03710.
doi: 10.1016/j.heliyon.2020.e03710
[57] XU Q, KE X, GE N, et al. Preparation of copper nanoparticles coated cotton fabrics with durable antibacterial properties[J]. Fibers and Polymers, 2018, 19(5):1004-1013.
doi: 10.1007/s12221-018-8067-5
[58] 姜兴茂, 刘奇, 郭琳. 二氧化硅包覆银铜纳米颗粒的结构及其抗菌性能[J]. 纺织学报, 2020, 41(11):102-108.
JIANG Xingmao, LIU Qi, GUO Lin. Microstructure and antibacterial properties of silver-copper nanoparticles coated with silica[J]. Chinese Journal of Textile Science, 2020, 41(11):102-108.
[59] NOVOSELOV KS, GEIM AK, MOROZOV SV, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
doi: 10.1126/science.1102896
[60] NOVOSELOV K S, FAL V I, COLOMBO L, et al. A roadmap for grapheme[J]. Nature, 2012, 490(7419):192-200.
doi: 10.1038/nature11458
[61] 张勇, 李桢. 石墨烯及氧化石墨烯在纺织领域的抗菌应用[J]. 棉纺织技术, 2020, 48(9):75-79.
ZHANG Yong, LI Zhen. Antibacterial application of graphene and go in textile field[J]. Cotton Textile Technology, 2020, 48(9):75-79.
[62] 高晶, 张俊, 赵泽阳, 等. 氧化石墨烯协同TiO2/SiO2改性涤/棉织物的抗菌持久性与服用性[J]. 纺织学报, 2019, 40(10):120-126.
GAO Jing, ZHANG Jun, ZHAO Zeyang, et al. Effect of TiO2/SiO2 on antibacterial performance of polyester/cotton fabrics modified by graphene oxide[J]. Journal of Textile Research, 2019, 40(10):120-126.
[63] 蒋佳佳, 卢小菊, 孟鸳, 等. 氧化石墨烯纳米银复合材料的制备及对大肠杆菌抑菌性能的研究[J]. 化工新型材料, 2019, 47(12):121-126.
JIANG Jiajia, LU Xiaoju, MENG Yuan, et al. Preparation of go nano-silver composite and study on its antibacterial properties against Escherichia coli[J]. New Chemical Materials, 2019, 47(12):121-126.
[64] ZHAO J, DENG B, LV M, et al. Graphene oxide-based antibacterial cotton fabrics[J]. Advanced Healthcare Materials, 2013, 2(9):1259-1266.
doi: 10.1002/adhm.v2.9
[65] 熊德鑫. 现代微生态学[M]. 北京: 中国科学技术出版社, 2000: 3.
XIONG Dexin. Modern microecology[M]. Beijing: China Science & Technology Press, 2000: 3.
[66] 熊德鑫. 功能性纺织品与人体皮肤的微生态平衡[J]. 针织工业, 2006, 8:13-18.
XIONG Dexin. Microecological balance of functional textiles and human skin[J]. Knitting Industries, 2006, 8:13-18.
[67] AEBI U, ANKLAM E, BAUN A, et al. Impact of engineered nanomaterials on health: considerations for benefit-risk assessment[M]. Belgium: Publications Office of the European Union, 2011: 63.
[68] MIKKELSEN S H, HANSEN E, CHRISTENSEN T B, et al. Survey on basic knowledge about exposure and potential environmental and health risks for selected nanomaterials[M]. Denmark: COWI A/S, 2011: 24.
[1] CHEN Xiangxiang, WU Ting, ZHOU Weitao, SUN Yangyang, DU Shan, ZHANG Xiaoli. Grafting modification of polyamide 6 fabric with methyl methacrylate initiated by hydrogen peroxide/ascorbic acid and its properties [J]. Journal of Textile Research, 2021, 42(09): 131-136.
[2] CHEN Ke, ZHANG Di, JI Yijun, LE Rongqing, SU Xuzhong. Effect of combed polyester top content on properties of polyester knitted fabrics [J]. Journal of Textile Research, 2021, 42(09): 66-69.
[3] ZHANG Chentian, ZHAO Lianying, GU Xuefeng. Wearability of hollow coffee carbon polyester/cotton blended weft plain knitted fabric [J]. Journal of Textile Research, 2021, 42(03): 102-109.
[4] ZHAO Huan, PAN Li, CUI Xiaoshuang. Luminescent properties of rare earth aluminate on fabrics [J]. Journal of Textile Research, 2021, 42(03): 136-142.
[5] XU Xuanxuan, GONG Jixian, ZHANG Jianfei, WANG Li, HUANG Jingfeng. Research progress in antibacterial substances from Apocynum venetum and their antibacterial mechanism [J]. Journal of Textile Research, 2020, 41(09): 149-154.
[6] MA Feifei. Stab-resistant performance and wearability of composite materials made by discrete resin molding [J]. Journal of Textile Research, 2020, 41(07): 67-71.
[7] GAO Simeng, WANG Hongbo, DU Jinmei, WANG Wencong. Synthesis of polybetaine antibacterial agent and its applications in cotton textiles finishing [J]. Journal of Textile Research, 2020, 41(02): 89-94.
[8] GAO Xue, LI Zheng, GONG Jixian, LI Qiujin, LI Fengyan, ZHANG Jianfei. Research progress on new bio-antibacterial agents for textiles [J]. Journal of Textile Research, 2020, 41(02): 187-192.
[9] GAO Jing, ZHANG Jun, ZHAO Zeyang, LI Wandi, WANG Jiajun, WANG Lu. Antibacterial durability and wearability of polyester/cotton fabric modified collaboratively by graphene oxide and TiO2/SiO2 [J]. Journal of Textile Research, 2019, 40(10): 120-126.
[10] . Preparation and properties of CNTs/PEDOT:PSS thermoelectric composite textile materials [J]. Journal of Textile Research, 2018, 39(11): 50-55.
[11] . Progress in overall wearability evaluation of disposable diapers [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 175-182.
[12] . UV-induced grafting dyeing of modified reactive dye on alkali treated polyester fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(11): 91-96.
[13] . Review of smart garment materials and wearability thereof [J]. Journal of Textile Research, 2015, 36(12): 158-164.
[14] . Design process of security clothing [J]. Journal of Textile Research, 2015, 36(05): 158-164.
[15] . Performance of blended fabrics with coffee carbon fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(7): 48-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!