Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (08): 167-175.doi: 10.13475/j.fzxb.20201002109
• Machinery & Accessories • Previous Articles Next Articles
WANG Luojun1(), PENG Laihu2,3, SHI Weimin2,3, ZHANG Weizhong1
CLC Number:
[1] | 陈金灿. 中国纺机行业“十三五”发展系列报道之二中国纺机阔步新征程[J]. 纺织机械, 2016(2): 30-31. |
CHEN Jincan. China textile machinery industry "Thirteenth Five-Year" development report series 2 China textile machinery strides new journey[J]. Textile Machinery, 2016(2): 30-31. | |
[2] | 王钢飚. 电子提花机传动系统及选针器检测仪研制[D]. 杭州: 浙江大学, 2010:40-42. |
WANG Gangbiao. Appliaction of the transmission system of jcaquard and an electronic needle selection tester[D]. Hangzhou: Zhejiang University, 2010:40-42. | |
[3] | 李军, 朱方明, 周炯, 等. 应用频闪原理的选针器频率检测系统设计[J]. 纺织学报, 2017, 38(3):138-142. |
LI Jun, ZHU Fangming, ZHOU Jiong, et al. Appliaction of laser displacement sensor to free-form surface measurement[J]. Journal of Textile Research, 2017, 38(3):138-142. | |
[4] | 王罗俊. 电磁选针器的动态特性及控制实现[D]. 杭州: 浙江理工大学, 2019:14-24. |
WANG Luojun. Dynamic characteristics and control realization of electromagnetic needle selector[D]. Hangzhou: Zhejiang Sci-Tech University, 2019:14-24. | |
[5] | 梁灿彬, 秦光戎, 梁竹健. 电磁学[M]. 北京: 高等教育出版社, 2012:287-289. |
LIANG Canbin, QIN Guangrong, LIANG Zhujian. Electromagnetism[M]. Beijing: Higher Education Press, 2012: 287-289. | |
[6] | 孟宗, 刘彬. 激光多普勒扭矩非接触测量的研究[J]. 光电工程, 2006(6):88-91. |
MENG Zong, LIU Bin. Torque non-contact measurement based on laser doppler effect[J]. Opto-Electronic Engineering, 2006(6):88-91. | |
[7] | 左爱斌, 于梅, 马明德, 等. 高频振动外差激光干涉仪研究[J]. 科技导报, 2006(11):13-14. |
ZUO Aibin, YU Mei, MA Mingde, et al. Research of heterodyne interferometer of high-frequency vibra-tion[J]. Science & Technology Review, 2006(11):13-14. | |
[8] | 刘杰坤, 马修水, 马勰. 激光多普勒测振仪研究综述[J]. 激光杂志 2014, 35(12):1-5. |
LIU Jiekun, MA Xiushui, MA Xie. Review of laser doppler vibrometer[J]. Laser Journal, 2014, 35(12):1-5. | |
[9] | 齐洪东, 杨涛, 岳高铭, 等. 微型压电陶瓷振动发电技术研究综述[J]. 传感器与微系统, 2007(5):1-4. |
QI Hongdong, YANG Tao, YUE Gaoming, et al. Survey on research of miniature vibration generation technology based on piezoelectric ceramics[J]. Transducer and Microsystem Technologies, 2007(5):1-4. | |
[10] | 孙艾薇. 结构健康监测中的压电传感技术研究[D]长沙: 中南大学, 2010:3-4. |
SUN Aiwei. Research on piezoelectric sensing technology in structural health monitoring[D]. Changsha: Central South University, 2010:3-4. | |
[11] | 黄家荣, 叶晓靖. 压电陶瓷电特性测试与分析[J]. 电子技术应用, 2016, 42(8):16-20. |
HUANG Jiarong, YE Xiaojing. Testing and analysis of PZT electrical characteristic[J]. Application of Electronic Technique, 2016, 42(8):16-20. | |
[12] | 周秀珍, 肖雷. 基于快速傅里叶变换的实时频谱分析方法研究[J]. 信息通信, 2018(8):21-22. |
ZHOU Xiuzhen, XIAO Lei. Research on real-time spectrum analysis method based on fast fourier trans-form[J]. Information & Communications, 2018(8):21-22. | |
[13] | 叶飞, 吴加权, 张馨予, 等. 基于谐波窗函数的桥梁振动信号分解与重构[J]. 振动与冲击, 2018, 37(16):234-240. |
YE Fei, WU Jiaquan, ZHANG Xinyu, et al. Decomposition and reconstruction of bridge vibration signals based on the harmonic window function[J]. Journal of Vibration and Shock, 2018, 37(16):234-240. | |
[14] | 袁帅. 基于压电效应的环境俘能技术研究[D]. 南京: 南京邮电大学, 2015:7-11. |
YUAN Shuai. Research on technology of environmental energy harvesting based on piezoelectric effect[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2015:7-11. | |
[15] |
SIROHI J, CHOPRA I. Fundamental understanding of piezoelectric strain sensors[J]. Journal of Intelligent Material Systems and Structures, 2000, 11(4):246-257.
doi: 10.1106/8BFB-GC8P-XQ47-YCQ0 |
[16] | 谢静. 新型电荷放大器设计[D]. 西安: 西安理工大学, 2008:10-14. |
XIE Jing. Design of a new charge amplifier[J]. Xi'an: Xi'an University of Technology, 2008:10-14. | |
[17] | 张微, 高国旺, 李汉兴, 等. 新型压电式传感器前置放大电路的设计[J]. 电子测试, 2010(6):10-14. |
ZHANG Wei, GAO Guowang, LI Hanxing, et al. Design of preamplifier circuit based on novel piezoelectric sensor[J]. Electronic Test, 2010(6):10-14. |
[1] | TU Jiajia, SUN Lei, MAO Huimin, DAI Ning, ZHU Wanzhen, SHI Weimin. Automatic bobbin changing technology for circular weft knitting machines [J]. Journal of Textile Research, 2022, 43(07): 178-185. |
[2] | ZHENG Baoping, JIANG Gaoming. Design of warp knitting machine data management system based on cloud server [J]. Journal of Textile Research, 2022, 43(07): 186-192. |
[3] | JIN Guiyang, CHEN Gang, SUN Pingfan. Information model of sweater production workshops based on OPC unified architecture and its application [J]. Journal of Textile Research, 2022, 43(03): 185-192. |
[4] | LI Dongdong, ZHANG Chengjun, ZUO Xiaoyan, ZHANG Chi, ZHU Li, LIU Yakun. Influence of densely wound coil array structure on driving performance of suspended knitting needles [J]. Journal of Textile Research, 2021, 42(09): 156-162. |
[5] | ZHENG Baoping, JIANG Gaoming, XIA Fenglin, ZHANG Aijun. Design of dynamic tension compensation system for warp knitting let-off based on model predictions [J]. Journal of Textile Research, 2021, 42(09): 163-169. |
[6] | ZHOU Mengmeng, JIANG Gaoming, GAO Zhe, ZHENG Peixiao. Research progress in weft-knitted biaxial tubular fabric reinforced composites [J]. Journal of Textile Research, 2021, 42(07): 184-191. |
[7] | GUO Weidong, XIA Fenglin, ZHANG Qi. Influencing factors on high speed of electronic shogging system in warp knitting machines [J]. Journal of Textile Research, 2021, 42(01): 162-166. |
[8] | ZHAO Boyu, LIANG Xinhua, CONG Honglian. Structural modeling and process practice of three-dimensional fully fashioned face masks woven by computerized flat knitting machine [J]. Journal of Textile Research, 2020, 41(12): 59-65. |
[9] | DAI Ning, PENG Laihu, HU Xudong, CUI Ying, ZHONG Yaosen, WANG Yuefeng. Method for testing natural frequency of weft knitting needles in free state [J]. Journal of Textile Research, 2020, 41(11): 150-155. |
[10] | LI Dongdong, ZHANG Chengjun, ZUO Xiaoyan, ZHANG Chi, LI Hongjun, ZHOU Xiangyang. Study on magnetic field distribution in permanent magnetic needle drive using hybrid magnetic suspension needle [J]. Journal of Textile Research, 2020, 41(09): 136-142. |
[11] | LIU Bo, CONG Honglian. Research and implementation of flat-bed knitting process model of fully formed suit [J]. Journal of Textile Research, 2020, 41(07): 53-58. |
[12] | WANG Songsong, PENG Laihu, HU Xudong. Knitting machine information modeling under OPC unified architecture framework [J]. Journal of Textile Research, 2020, 41(05): 167-175. |
[13] | LIU Bo, CONG Honglian. Process design and knitting principle of one-piece casual suits based on four-needle-bed flat knitting machine [J]. Journal of Textile Research, 2020, 41(04): 129-134. |
[14] | SUN Shuai, MIAO Xuhong, ZHANG Qi, WANG Jin. Yarn tension fluctuation on high-speed warp knitting machine [J]. Journal of Textile Research, 2020, 41(03): 51-55. |
[15] | WANG Jiandong, XIA Fenglin, LI Yalin, ZHAO Yuning. Optimal sliding mode control of electronic transverse servo for comb bar of warp knitting machine [J]. Journal of Textile Research, 2020, 41(02): 143-148. |
|