Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (06): 153-159.doi: 10.13475/j.fzxb.20201004407
• Apparel Engineering • Previous Articles Next Articles
ZHAO Jingde1,2(), DING Yiran1,2, ZHANG Chunhong1,2
CLC Number:
[1] | 姜荣, 陈亮, 象伟宁. 上海市极端高温天气变化特征[J]. 气象与环境学报, 2016, 32(1):66-74. |
JIANG Rong, CHEN Liang, XIANG Weining. Variation characteristics of extreme high temperature weather in Shanghai[J]. Journal of Meteorology and Environment, 2016, 32(1):66-74. | |
[2] | GAGGE A, HERRINGTON L, WINSLOW C. Thermal interchanges between the human body and its atmospheric environment[J]. American Journal of Hygiene, 1973, 26(1):84-102. |
[3] | FANGER P O. Thermal comfort:analysis and applications in environmental engineering[M]. Denmark: Danish Technical Press, 1970:244. |
[4] | GIBSON P. Multiphase heat and mass transfer through hygroscopic porous media with applications to clothing materials[R]. Massachusetts: Technical Report Natick/TR-97/005, 1996. |
[5] | 张昭华, 王云仪, 李俊. 衣下空气层厚度对着装人体热传递的影响[J]. 纺织学报, 2010, 31(12):103-107. |
ZHANG Zhaohua, WANG Yunyi, LI Jun. Influence of air layer thickness under clothing on heat transfer of dressed body[J]. Journal of Textiles Research, 2010, 31(12):103-107. | |
[6] | 李珩, 邱义芬, 姜南, 等. 通风温度对全身通风服热防护性能影响研究[J]. 航天医学与医学工程, 2014, 27(3):205-209. |
Li Heng, QIU Yifen, JIANG Nan, et al. Influence of ventilation temperature on thermal protection performance of full-body ventilation suit[J]. Space Medicine and Medical Engineering, 2014, 27(3):205-209. | |
[7] | MERT Emel, PSIKUTA Agnes, BUENO Marie-Ange, et al. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment, 2015, 59(11):1701-1710. |
[8] | GHAZY A, BERGSTROM D J. Numerical simulation of the influence of fabric's motion on protective clothing performance during flash fire exposure[J]. Heat & Mass Transfer, 2013, 49(6):775-788. |
[9] |
NEVES S F, CAMPOS J B L M, MAYOR T S. Effects of clothing and fibres properties on the heat and mass transport, for different body heat/sweat releases[J]. Applied Thermal Engineering, 2017, 117:109-121.
doi: 10.1016/j.applthermaleng.2017.01.074 |
[10] | JIA N, JIA X, AN H, et al. A 3D heat and moisture transfer model with radiation in clothing[J]. Physica A: Statal Mechanics and its Applications, 2019, 517:440-451. |
[11] |
UDAYRA J, WANG F. A three-dimensional conjugate heat transfer model for thermal protective clothing[J]. International Journal of Thermal Sciences, 2018, 130:28-46.
doi: 10.1016/j.ijthermalsci.2018.04.005 |
[12] | CROCKFORD G W, PRESTIDGE M C P. A trace gas technique for measuring clothing microclimate air exchange rates[J]. British Journal of Industrial Medicine, 1972, 29(4):378-386. |
[13] | 曾彦彰, 邓中山, 刘静. 基于微型风扇阵列系统的人体降温空调服[J]. 纺织学报, 2007, 28(6):100-105. |
ZENG Yanzhang, DENG Zhongshan, LIU Jing. Human body cooling air-conditioning suit based on micro fan array system[J]. Journal of Textile Research, 2007, 28(6):100-105. | |
[14] |
HADID A, YANOVICH R, ERLICH T, et al. Effect of a personal ambient ventilation system on physiological strain during heat stress wearing a ballistic vest[J]. European Journal of Applied Physiology, 2008, 104(2):311.
doi: 10.1007/s00421-008-0716-8 |
[15] | GLITZ K J, SEIBEL U, ROHDE U, et al. Reducing heat stress under thermal insulation in protective clothing: microclimate cooling by a 'physiological' method[J]. Ergonomics the Official Publication of the Ergonomics Research Society, 2015, 58(8):1461-1469. |
[16] | 高黎颖. 气冷服对人体体表生理参数影响实验研究[D]. 长沙: 湖南科技大学, 2017:73-75. |
GAO Liying. Experimental study on the effect of air-cooled clothing on the physiological parameters of the human body surface[D]. Changsha: Hunan University of Science and Technology, 2017:73-75. |
|