Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (11): 179-186.doi: 10.13475/j.fzxb.20201004708
• Comprehensive Review • Previous Articles Next Articles
ZHOU Yuanyuan1,2,3, ZHENG Yuming1,2, WU Xiaoqiong1,2, SHAO Zaidong1,2()
CLC Number:
[1] |
FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38.
doi: 10.1038/238037a0 |
[2] |
HAN G Q, JIN Y H, BURGESSR A, et al. Visible-light-driven valorization of biomass inter-mediates integrated with H2 production catalyzed by ultrathin Ni/CdS nanosheets[J]. J Am Chem Soc, 2017, 139(44):15584-15587.
doi: 10.1021/jacs.7b08657 |
[3] |
CHU K H, YE L Q, WANG W, et al. Enhanced photocatalytic hydrogen production from aqueous sulfide/sulfite solution by ZnO0.6S0.4with simultaneous dye degradation under visible-light irradiation[J]. Chemosphere, 2017, 183:219-228.
doi: 10.1016/j.chemosphere.2017.05.112 |
[4] |
LIN Z Y, LI L H, YU L L, et al. Dual-functional photocatalysis for hydrogen evolution from industrial wastewaters[J]. Phys Chem Chem Phys, 2017, 19:8356-8362.
doi: 10.1039/C7CP00250E |
[5] |
TAKEDA H, OHASHI K, SEKINE A, et al. Photocatalytic CO2 reduction using Cu (I) photosensitizers with a Fe(II) catalyst[J]. J Am Chem Soc, 2016, 138(13):4354-4357.
doi: 10.1021/jacs.6b01970 |
[6] |
PAN Y X, YOU Y, XIN S, et al. Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts[J]. J Am Chem Soc, 2017, 139(11):4123-4129.
doi: 10.1021/jacs.7b00266 |
[7] |
KUEHNEL M F, ORCHARD K L, DALLE K E, et al. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals[J]. J Am Chem Soc, 2017, 139(21):7217-7223.
doi: 10.1021/jacs.7b00369 |
[8] |
SCANDURA G, CIRIMINNA R, OZER L Y, et al. Antifouling and photocatalytic antibacterial activity of the aquasun coating in seawater and related media[J]. ACS Omega, 2017, 2:7568-7575.
doi: 10.1021/acsomega.7b01237 |
[9] |
NAGAY B E, DINI C, CORDEIRO J M, et al. Visible-light-induced photocatalytic and antibacterial activity of TiO2codoped with nitrogen and bismuth: new perspectives to control implant-biofilm-related diseases[J]. ACS Appl Mater Inter, 2019, 11(20):18186-18202.
doi: 10.1021/acsami.9b03311 |
[10] | ZHANG C, GU Y N, TENG G X, et al. Designation of double-shell Ag/AgCl/G-ZnFe2O4 nanocube with enhanced light absorption and superior photocatalytic antibacterial activity[J]. ACS Appl Mater Inter, 2020, 12(26):29883-29898. |
[11] |
MATTHEWS RW. Photooxidation of organic material in aqueous suspensions of titanium dioxide[J]. Water Res, 1986, 20(5):569-578.
doi: 10.1016/0043-1354(86)90020-5 |
[12] |
EL-MORSI TM, BUDAKOWSKI WR, ABD-EL-AZIZ AS, et al. Photocatalytic degradation of 1,10-dichlorodecane in aqueous suspensions of TiO2: areaction of adsorbed chlori-nated alkane with surface hydroxyl radicals[J]. Environ Sci Technol, 2000, 34(6):1018-1022.
doi: 10.1021/es9907360 |
[13] |
ESPLUGAS S, GIMENEZ J, CONTRERAS S, et al. Comparison of different advanced oxidation processes for phenol degradation[J]. Water Res, 2002, 36(4):1034-1042.
doi: 10.1016/S0043-1354(01)00301-3 |
[14] |
DONG H R, ZENG G M, TANG L, et al. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures[J]. Water Res, 2015, 79:128-146.
doi: 10.1016/j.watres.2015.04.038 |
[15] |
KU Y, JUNG I L. Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide[J]. Water Res, 2001, 35(1):135-142.
doi: 10.1016/S0043-1354(00)00098-1 |
[16] |
KUMAR V, WANCHOO R K, TOOR A P. Photocatalytic reduction and crystallization hybrid system for removal and recovery of lead (Pb)[J]. Ind Eng Chem Res, 2021, 60(24):8901-8910.
doi: 10.1021/acs.iecr.1c01169 |
[17] |
SELLI E, GIORGI A D, BIDOGLIO G. Humic acid-sensitized photoreduction of Cr(VI) on ZnO particles[J]. Environ Sci Technol, 1996, 30(2):598-604.
doi: 10.1021/es950368+ |
[18] |
JACOBY W A, BLAKE D M, NOBLERD, et al. Kinetics of the oxidation of trichloroethylene in air via hetero-geneous photocatalysis[J]. J Catal, 1995, 157(1):87-96.
doi: 10.1006/jcat.1995.1270 |
[19] |
OBEE T N. Photooxidation of sub-parts-per-million tolu-ene and formaldehyde levels on titania using a glass-plate reactor[J]. Environ Sci Technol, 1996, 30(12):3578-3584.
doi: 10.1021/es9602713 |
[20] |
WANG L L, ZHAO Y C, ZHANG J Y. Photochemical removal of SO2 over TiO2based nanofibers by a dry photocatalytic oxidation process[J]. Energ Fuel, 2017, 31(9):9905-9914.
doi: 10.1021/acs.energyfuels.7b01514 |
[21] | SEREDYCH M, MABAYOJE O, BANDOSZ T J. Interactions of NO2 with zinc (hydr)oxide/graphene phase composites: visible light enhanced surface reactivity[J]. J Phys Chem, 2012, 116(3):2527-2535. |
[22] |
NGUYEN S N, TRUONG T K, YOU S J, et al. Investigation on photocatalytic removal of NO under visible light over Cr-doped ZnO nanoparticles[J]. ACS Omega, 2019, 4(7):12853-12859.
doi: 10.1021/acsomega.9b01628 |
[23] |
WANG S L, LI G S, LEUNG M K H, et al. Controlling charge transfer in quantum-size titania for photocatalytic applications[J]. Appl Catal B: Environ, 2017, 215(5):85-92.
doi: 10.1016/j.apcatb.2017.05.043 |
[24] |
CAO T P, LI Y J, WANG C H, et al. A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity[J]. Langmuir, 2011, 27(6):2946-2952.
doi: 10.1021/la104195v |
[25] |
GAO F, LU Q Y, PANG H, et al. Sandwich-type polymer nanofiber structure of poly(furfuryl alcohol): an effective template for ordered porous films[J]. J Phys Chem B, 2009, 113(37):12477-12481.
doi: 10.1021/jp9048499 |
[26] |
BAE S Y, SEO H W, PARK J. Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition[J]. J Phys Chem B, 2004, 108(17):5206-5210.
doi: 10.1021/jp036720k |
[27] |
SANKAR S S, KARTHICK K, SANGEETHA K, et al. Transition-metal-based zeolite imidazolate framework nanofibers via an electrospinning approach: a review[J]. ACS Omega, 2020, 5:57-67.
doi: 10.1021/acsomega.9b03615 |
[28] |
DING Z W, SALIM A, ZIAIE B. Selective nanofiber deposition through field-enhanced electrospinning[J]. Langmuir, 2009, 25(17):9648-9652.
doi: 10.1021/la901924z |
[29] |
ZHAO G, LIU S W, LU Q F, et al. Controllable synjournal of Bi2WO6 nanofibrous mat by electrospinning and enhanced visible photocatalytic degradation performances[J]. Ind Eng Chem Res, 2012, 51:10307-10312.
doi: 10.1021/ie300988z |
[30] |
ZHAN S H, CHEN D R, JIAO X L, et al. Long TiO2hollow fibers with mesoporous walls: sol-gel combined electrospun fabrication and photocatalytic properties[J]. J Phys Chem B, 2006, 110:11199-11204.
doi: 10.1021/jp057372k |
[31] |
LIU G S, LIU S W, LU Q F, et al. Synjournal of mesoporous BiPO4 nanofibers by electrospinning with enhanced photocatalytic performances[J]. Ind Eng Chem Res, 2014, 53(33):13023-13029.
doi: 10.1021/ie4044357 |
[32] |
MALI S S, KIM H, JANG W Y, et al. Novel synjournal and characterization of mesoporous ZnO nanofibers by electrospinning technique[J]. ACS Sustainable Chem Eng, 2013, 1(9):1207-1213.
doi: 10.1021/sc400153j |
[33] |
SONG J, WANG X Q, YAN J H, et al. Soft Zr-doped TiO2nanofibrous membranes with enhanced photocatalytic activity for water purification[J]. Sci Rep, 2017, 7:1636-1648.
doi: 10.1038/s41598-017-01969-w |
[34] |
XIAO G, HUANG X, LIAO X P, et al. One-pot facile synjournal of cerium-doped TiO2 mesoporous nanofibers using collagen fiber as the biotemplate and its application in visible light photocatalysis[J]. J Phys Chem C, 2013, 117(19):9739-9746.
doi: 10.1021/jp312013m |
[35] |
MONDAL K, BHATTACHARYYA S, SHARMA A. Photocatalytic degradation of naphthalene by electrospun mesoporous carbon-doped anatase TiO2nanofiber mats[J]. Ind Eng Chem Res, 2014, 53(49):18900-18909.
doi: 10.1021/ie5025744 |
[36] |
CAMILLO D, RUGGIERI F, SANTUCCI S, et al. N-doped TiO2 nanofibers deposited by electrospinning[J]. J Phys Chem C, 2012, 116(34):18427-18431.
doi: 10.1021/jp302499n |
[37] |
KAEWSAENEE J, VISAL-ATHAPHAND P, SUPAPHOL P, et al. Effects of magnesium and zirconium dopants on characteristics of titanium(IV) oxide fibers prepared by combined sol-gel and electrospinning techniques[J]. Ind Eng Chem Res, 2011, 50(13):8042-8049.
doi: 10.1021/ie102527p |
[38] |
WANG Y T, CHENG J, YU S Y, et al. Synergistic effect of N-decorated and Mn2+ doped ZnO nanofibers with enhanced photocatalytic activity[J]. Sci Rep, 2016, 6:32711-32721.
doi: 10.1038/srep32711 |
[39] |
PRADHAN A C, UYAR T. Electrospun Fe2O3 entrenched SiO2 supported N and S dual incorporated TiO2 nanofibers derived from mixed polymeric template/surfactant: enriched mesoporosity within nanofibers,effective charge separation,and visible light photocatalysis activity[J]. Ind Eng Chem Res, 2011, 50:8042-8049.
doi: 10.1021/ie102527p |
[40] |
LIU Y B, ZHU G Q, GAO J Z, et al. A novel synergy of Er3+/Fe3+ co-doped porous Bi5O7I microspheres with enhanced photocatalytic activity under visible-light irradiation[J]. Appl Catal B: Environ, 2017, 205(15):421-432.
doi: 10.1016/j.apcatb.2016.12.061 |
[41] |
DUAN Z J, HUANG Y Z, ZHANG D K, et al. Electrospinning fabricating Au/TiO2 network-like nanofibers as visible light activated photocatalyst[J]. Sci Rep, 2019, 9(1):8008-8016.
doi: 10.1038/s41598-019-44422-w |
[42] |
NALBANDIAN M J, GREENSTEIN K E, SHUAI D M, et al. Tailored synjournal of photoactive TiO2nanofibers and Au/TiO2nanofiber composites: structure and reactivity optimization for water treatment applications[J]. Environ Sci Technol, 2015, 49(3):1654-1663.
doi: 10.1021/es502963t |
[43] | FORMO E, LEE E, CAMPBELL D, et al. Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications[J]. Nano Lett, 2008, 8(2):2668-672. |
[44] |
SHANG M, WANG W Z, ZHANG L, et al. 3D Bi2WO6/TiO2 hierarchical heterostructure: controllable synjournal and enhanced visible photocatalytic degradation performances[J]. J Phys Chem C, 2009, 113(33):14727-14731.
doi: 10.1021/jp9045808 |
[45] |
ZHANG Z Y, SHAO C L, LI X H, et al. Electrospun nanofibers of ZnO-SnO2 heterojunction with high photocatalytic activity[J]. J Phys Chem C, 2010, 114(17):7920-7925.
doi: 10.1021/jp100262q |
[46] |
ZHAGN T, SHEN Y, QIU Y H, et al. Facial synjournal and photoreaction mechanism of BiFeO3/Bi2Fe4O9 heterojunction nanofibers[J]. ACS Sustainable Chem Eng, 2017, 5(6):4630-4636.
doi: 10.1021/acssuschemeng.6b03138 |
[47] |
HOU H L, SHAGN M H, WANG L, et al. Efficient photocatalytic activities of TiO2hollow fibers with mixed phases and mesoporous walls[J]. Sci Rep, 2015, 5:15228-15237.
doi: 10.1038/srep15228 |
[48] |
LV C, CHEN G, SUN J X, et al. Construction of α-β phase junction on Bi4V2O11 via electrospinning retardation effect and its promoted photocatalytic performance[J]. Inorg Chem, 2016, 55(10):4782-4789.
doi: 10.1021/acs.inorgchem.6b00130 |
[49] |
GHAFOOR S, ATA S, MAHMOO N, et al. Photosensitization of TiO2 nanofibers by Ag2S with the synergistic effect of excess surface Ti3+ states for enhanced photocatalytic activity under simulated sunlight[J]. Sci Rep, 2017, 7(255):2045-2322.
doi: 10.1038/s41598-017-01960-5 |
[50] |
SUCHANEK J P HENKA P, et al. Effect of temperature on photophysical properties of polymeric nanofiber materials with porphyrin photosensitizers[J]. J Phys Chem B, 2014, 118(23):6167-6174.
doi: 10.1021/jp5029917 |
[51] |
QIN D D, LU W Y, WANG X Y, et al. Graphitic carbon nitride from burial to re-emergence on polyethylene terephthalate nanofibers as an easily recycled photocatalyst for degrading antibiotics under solar irradiation[J]. ACS Appl Mater Inter, 2016, 8(39):25962-25970.
doi: 10.1021/acsami.6b07680 |
[52] |
YANG Y C, WEN J W, WEI J H, et al. Polypyrrole-decorated Ag-TiO2 nanofibers exhibiting enhanced photocatalytic activity under visible light illumination[J]. ACS Appl Mater Inter, 2013, 5(13):6201-6207.
doi: 10.1021/am401167y |
[1] | XU Shilin, YANG Shiyu, ZHANG Yaru, HU Liu, HU Yi. Preparation and properties of thermoplastic polyurethane/tefluororone amorphous fluoropolymer superhydrophobic nanofiber membranes [J]. Journal of Textile Research, 2021, 42(12): 42-42. |
[2] | JIA Lin, WANG Xixian, LI Huanyu, ZHANG Haixia, QIN Xiaohong. Preparation and properties of polyacrylonitrile/BaTiO3 composite nanofibrous filter membrane [J]. Journal of Textile Research, 2021, 42(12): 34-41. |
[3] | WANG Shudong, DONG Qing, WANG Ke, MA Qian. Preparation and properties of polylactic acid nanofibrous membrane reinforced by reduced graphene oxide [J]. Journal of Textile Research, 2021, 42(12): 28-33. |
[4] | WU Qinxin, HOU Chengyi, LI Yaogang, ZHANG Qinghong, QIN Zongyi, WANG Hongzhi. Radiative cooling nanofiber medical fabrics and sensor system integration [J]. Journal of Textile Research, 2021, 42(09): 24-30. |
[5] | QUAN Zhenzhen, WANG Yihan, ZU Yao, QIN Xiaohong. Jet formation mechanism and film forming characteristics of multi-curved surface sprayer for electrospinning [J]. Journal of Textile Research, 2021, 42(09): 39-45. |
[6] | CAO Yuanming, ZHENG Mi, LI Yifei, ZHAI Wangyi, LI Liyan, CHANG Zhuningzi, ZHENG Min. Preparation of MoS2/polyurethane composite fibrous membranes and their photothermal conversion properties [J]. Journal of Textile Research, 2021, 42(09): 46-51. |
[7] | ZHANG Yaru, HU Yi, CHENG Zhongling, XU Shilin. Preparation and energy storage properties of polyacrylonitrile-based Si/C/carbon nanotube composite carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(08): 49-56. |
[8] | YAN Tao, PAN Zhijuan. Strain sensing performance for thin and aligned carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(07): 62-68. |
[9] | YANG Zhi, LIU Chengkun, WU Hong, MAO Xue. Preparation and characterization of lignin/polyacrylonitrile-based carbon fibers [J]. Journal of Textile Research, 2021, 42(07): 54-61. |
[10] | GUO Fengyun, GUO Ziyi, GAO Lei, ZHENG Linjing. Preparation and properties of thermal bonded fibrous artificial blood vessels [J]. Journal of Textile Research, 2021, 42(06): 46-50. |
[11] | DAI Yang, YANG Nannan, XIAO Yuan. Preparation and properties of resistive flexible humidity sensors using electrospun carbon nanotubes [J]. Journal of Textile Research, 2021, 42(06): 51-56. |
[12] | CHEN Yu, XIA Xin. Preparation and electrochemical properties of liquid GaSn self-repairing anode materials for lithium-ion batteries [J]. Journal of Textile Research, 2021, 42(06): 57-62. |
[13] | ZHANG Beilei, SHEN Mingwu, SHI Xiangyang. Preparation and biomedical applications of electrospun short fibers [J]. Journal of Textile Research, 2021, 42(05): 1-8. |
[14] | ZHU Zhexin, MA Xiaoji, XIA Lin, LÜ Wangyang, CHEN Wenxing. Photocatalytic performance of iron hexadecachlorophthalocyanine/ polyacrylonitrile composite nanofibers synergistically enhanced by chloride ion [J]. Journal of Textile Research, 2021, 42(05): 9-15. |
[15] | ZHANG Lin, LI Zhicheng, ZHENG Qinyuan, DONG Jun, ZHANG Yin. Preparation and performance of flexible and anisotropic strain sensor based on electrospinning [J]. Journal of Textile Research, 2021, 42(05): 38-45. |
|