Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (12): 119-124.doi: 10.13475/j.fzxb.20201004806

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Influence of thermal and moist treatments on shape retention performance of anti-creasing wool fabrics

HUANG Hongbo1, HAN Zongbao1,2,3, GUO Heng1,2,3, YAO Jinbo2,3, JIANG Huiyu2,3, XIA Zhigang1, WANG Yunli1,2,3()   

  1. 1. State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, Hubei 430200, China
    3. College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2020-10-26 Revised:2021-09-16 Online:2021-12-15 Published:2021-12-29
  • Contact: WANG Yunli E-mail:ylwang@wtu.edu.cn

Abstract:

In order to maintain the shape retenion performance of anti-creasing wool fabrics, it is of great significance to study the influence of thermal and moist conditions on the fabrics shape retention performance. In this research, the orthogonal experiments were carried out to study the changes in temperature and humidity on anti-creasing wool fabrics. Wrinkle recovery angle, the breaking strength and microstructure of a selected anti-creasing wool fabric before and after treatment were characterized using fabric wrinkle elasticity tester, strength tester, scanning electron microscope, Fourier infrared spectroscopy and X-ray diffractometer. The results show that the wrinkle recovery angle of the anti-creasing wool fabric decreases with the increase of temperature and relative humidity. Among them, the wrinkle recovery angle of the anti-creasing wool fabric treated with 90% relative humidity and 100 ℃ conditions is reduced to 88.2% of that of the original fabric. With fixed processing temperature, the breaking strength of the anti-creasing wool fabric gradually decreases with the increase of the relative humidity. In terms of microscopic morphology and structure, there witness damages in fibers on the fabric surface for the anti-creasing wool fabric treated with higher temperature and humidity, with no obvious change in crystallinity of the fabric.

Key words: thermal and moist treatment, anti-creasing wool fabric, shape retention performance, breaking strength

CLC Number: 

  • TS195.2

Fig.1

Wrinkle recovery angle of anti-creasing wool fabric after different thermal and moist treatments"

Tab.1

Percentage of wrinkle recovery angle of anti-creasing wool fabric after thermal and moist treatment to original"

处理温度/℃ 不同相对湿度下的折皱回复角相对百分比/%
30% 60% 90%
20 100.0 97.5 96.8
40 98.5 96.1 95.1
60 97.2 94.2 89.9
80 95.4 93.8 91.4
100 93.0 90.0 88.2

Tab.2

Washing flatness rating of anti-creasing wool fabrics after thermal and moist treatment"

处理度/℃ 不同相对湿度下的外观平整度/级
30% 45% 60% 75% 90%
20 4.6 4.5 4.5 4.5 4.5
40 4.5 4.5 4.5 4.4 4.4
60 4.5 4.5 4.5 4.5 4.5
80 4.5 4.4 4.4 4.5 4.4
100 4.5 4.5 4.4 4.5 4.4

Fig.2

Strength of anti-creasing wool fabric after different thermal and moist treatments"

Fig.3

Surface morphology of anti-creasing wool fabric after thermal and moist treatments(×500)."

Fig.4

Infrared spectra of anti-creasing wool fabric treated with different relative humidity at 100 ℃"

Fig.5

X-ray diffraction patterns of anti-creasing wool fabric treated at different temperatures under 90% relative humidity"

Fig.6

TG and TGA patterns of anti-creasing wool fabrics treated at 20, 60 and 100℃ under 90% relative humidity"

[1] 陈静静, 王必其, 王雪琴. 针刺复合羊毛面料的设计及其性能[J]. 纺织学报, 2019, 40(3):49-53.
CHEN Jingjing, WANG Biqi, WANG Xueqin. Design and performance of needle-punched composite wool fabric[J]. Journal of Textile Research, 2019, 40(3):49-53.
[2] 庄伟华, 杨德明, 符爱芬. 提高精纺羊毛织物褶裥保持性的后整理工艺[J]. 毛纺科技, 2019, 47(11):22-25.
ZHUANG Weihua, YANG Deming, FU Aifen. Post-finishing process to improve the pleated retention of worsted wool fabric[J]. Wool Textile Journal, 2019, 47(11):22-25.
[3] 梅静霞, 张楠, 王强. 基于修饰蛋白酶的羊毛织物防毡缩整理[J]. 纺织学报, 2019, 40(6):74-79.
MEI Jingxia, ZHANG Nan, WANG Qiang. Wool anti-felting treatment based on modified protease[J]. Journal of Textile Research, 2019, 40(6):74-79.
[4] 王平, 王强, 范雪荣, 等. 羊毛蛋白酶防毡缩加工综述[J]. 印染, 2010, 36(5):46-49.
WANG Ping, WANG Qiang, FAN Xuerong, et al. Summary of wool protease antifelting processing[J]. China Dyeing & Finishing, 2010, 36(5):46-49.
[5] 曾林泉. 羊毛免烫整理技术进展:一[J]. 印染, 2017, 43(8):52-55.
ZENG Linquan. Advances in technology of anti-creasing finishing of wool: 1[J]. China Dyeing & Finishing, 2017, 43(8):52-55.
[6] 京沪津气流仪协作小组. 相对湿度对羊毛细度测定值的影响及修正[J]. 毛纺科技, 1977, 5(5):33-35.
The Beijing-Shanghai-Tianjin Airflow Instrument Cooperation Group. The influence of relative humidity on the measured value of wool fineness and its correc-tion[J]. Wool Textile Journal, 1977, 5(5):33-35.
[7] 宗亚宁, 张海霞. 纺织材料学[M]. 2版. 上海: 东华大学出版社, 2013:105-107.
ZONG Yaning, ZHANG Haixia. Textile materials science [M]. 2nd ed. Shanghai: Donghua University Press, 2013: 105-107.
[8] 韦玉辉, 宁琳, 吴雄英. 家用干衣机滚筒烘干方式对羊毛织物性能的影响[J]. 纺织学报, 2017, 38(7):69-74.
WEI Yuhui, NING Lin, WU Xiongying. The influence of rotating-drying method on the properties of wool fabric dried in domestic dryer[J]. Journal of Textile Research, 2017, 38(7):69-74.
[9] 姚穆. 纺织材料学[M]. 3版. 北京: 中国纺织出版社, 2009:49-50.
YAO Mu. Textile materials[M]. 3rd ed. Beijing: China Textile & Apparel Press, 2009:49-50.
[10] 周玉庆. 湿、热处理条件对山羊绒性能的影响[D]. 西安:西安工程大学, 2016:37-42.
ZHOU Yuqing. The influence of humidity and heat treatment conditions on the properties of cashmere[D]. Xi'an: Xi'an Polytechnic University, 2016:37-42.
[11] 韦玲俐, 邹沁杉, 王璐. 无氟自清洁功能型羊毛/羊绒混纺织物的研发[J]. 纺织学报, 2019, 40(9):102-107.
WEI Lingli, ZOU Qinshan, WANG Lu. Preparation of fluorine-free water repellent wool/cashmere treated fabric[J]. Journal of Textile Research, 2019, 40(9):102-107.
[12] NAZIFE Korkmaz Memi, SIBEL Kaplan. Wool fabric having thermal comfort management function via shape memory polyurethane finishing[J]. Journal of The Textile Institute, 2020, 111(5):734-744.
doi: 10.1080/00405000.2019.1661936
[13] 袁久刚, 季吉, 薛琪. 羊毛角蛋白在巯基乙酸胆碱中的溶解再生[J]. 纺织学报, 2021, 42(1):35-39.
YUAN Jiugang, JI Ji, XUE Qi. Dissolution and regeneration of wool keratin in choline thioglycolate[J]. Journal of Textile Research, 2021, 42(1):35-39.
[14] 包红, 徐水, 张小宁. 家蚕丝素蛋白阳离子化及其对羊毛性状的影响[J]. 纺织学报, 2019, 40(7):24-30.
BAO Hong, XU Shui, ZHANG Xiaoning. Cationization of Bombyx mori silk fibroin and effect there of on wool traits[J]. Journal of Textile Research, 2019, 40(7):24-30.
[15] 贾丽霞, 金崇业, 刘瑞. 硅磷杂化阻燃整理对羊毛结构与热稳定性能的影响[J]. 纺织学报, 2017, 38(12):101-105.
JIA Lixia, JIN Chongye, LIU Rui. Influence of flame retardant finishing with silicon-phosphorus hybridization on structure and thermal stability of wool[J]. Journal of Textile Research, 2017, 38(12):101-105.
[16] 徐向, 李国彬, 李斌, 等. 羧甲基纤维盐阻燃羊毛织物的制备与性能研究[J]. 化学与黏合, 2016, 38(5):357-360,387.
XU Xiang, LI Guobin, LI Bin, et al. Preparation and performance of carboxymethyl cellulose salt flame-retardant wool fabric[J]. Chemistry and Adhesion, 2016, 38(5):357-360,387.
[1] ZHU Weiwei, GUAN Liyuan, LONG Jiajie, SHI Meiwu. Effects of supercritical CO2 fluid treatment time on structure and properties of diacetate fibers [J]. Journal of Textile Research, 2021, 42(12): 97-102.
[2] HE Junyan, LI Mingfu, LIAN Wenwei, HUANG Tao, ZHANG Jin. Ultrasonic-assisted chemical degumming process for making pineapple leaf fiber [J]. Journal of Textile Research, 2021, 42(09): 83-89.
[3] GUO Heng, HUANG Hongbo, YAO Jinbo, JIANG Huiyu, XIA Zhigang, WANG Yunli. Effect of household washing on properties of anti-creasing cotton fabrics [J]. Journal of Textile Research, 2021, 42(07): 129-136.
[4] WEI Yanhong, LIU Xinjin, XIE Chunping, SU Xuzhong, JI Yijun. Structure and properties of several differentiated polyester fibers [J]. Journal of Textile Research, 2019, 40(11): 13-19.
[5] ZHANG Anying, WANG Zhaoying, WANG Rui, DONG Zhenfeng, WEI Lifei, WANG Deyi. Preparation and structural properties of flame retardant poly(L-lactic acid) and fiber thereof [J]. Journal of Textile Research, 2019, 40(04): 7-14.
[6] . Influence of different drawing methods on appearance and yarn quality of cloud yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 43-48.
[7] . Tensile characteristics of warp knitted spacer fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(04): 55-60.
[8] . Tensile properties of self-twist yarns [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 44-48.
[9] . Modification process of oxidized bamboo pulp fibers using silk fibroin [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(08): 12-15.
[10] . Preparation and properties of epichlorohydrin-crosslinked sodium alginate fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(05): 18-22.
[11] . Recycling of waste cotton fabrics by ionic liquid dissolution processing [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(05): 23-28.
[12] . Preparation and properties of soybean dregs∕starch composite films [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(6): 30-0.
[13] . Effect of UV irradiation on structure and properties of cotton fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(3): 52-0.
[14] . Influence of knitting fabrics propreties on edge sewing of knitted apparel [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(11): 97-101.
[15] . Characterization of PEK-C ultra-fine non-woven fabric-films prepared by electrospining [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(7): 23-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(03): 7 -8 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(03): 9 -10 .
[3] HUANG Xiao-hua;SHEN Ding-quan. Degumming and dyeing of pineapple leaf fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 75 -77 .
[4] MA Xiao-guang;CUI Gui-xin;DONG Shao-wei . Study of gel form intelligent cotton knitgoods with polymer grafting initiated by microwave plasma[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 13 -16 .
[5] WAN Zhen-kai;LI Jing-dong. Feature of acoustic emission and failure analysis for three-dimensional braided composite material under compressive load[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 20 -24 .
[6] ZHANG Jin-qiu;ZHANG Hua;HAO Xin-min;JIANG Feng-qin. Relationship between high temperature scouring time and degumming quality of hemp fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 81 -83 .
[7] DAI Jian-guo;CHEN Min-zhi;HE Ying. Draping technology and the applicability analysis[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(3): 117 -120 .
[8] LI Shu-feng;CHENG Bo-wen;SUN Kun-song;SONG Hao-jiang. Study on the flame retardant HWM viscose fibers modified by grafting[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(4): 60 -62 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(03): 14 -15 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 1982, 3(08): 60 .