Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (12): 166-173.doi: 10.13475/j.fzxb.20201007508

• Comprehensive Review • Previous Articles     Next Articles

Research progress in fibrous materials for interfacial solar steam generation system

GE Can1,2, ZHANG Chuanxiong3, FANG Jian1,2()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China
    3. Textile Industry Science and Technology Development Center, Beijing 100020, China
  • Received:2020-10-29 Revised:2021-05-06 Online:2021-12-15 Published:2021-12-29
  • Contact: FANG Jian E-mail:jian.fang@suda.edu.cn

Abstract:

Aimed at the alleviation of the increasingly scarce of fossil energy and the shortage of fresh water resources, and promote development and application of fibrous materials in the utilization of water resources, latest research progress in the interfacial solar steam generation system using fibrous materials was reviewed. This paper started by introducing the main principles, development history and the applications of interfacial solar steam generation system. The photothermal conversion materials and auxiliary materials in the interfacial solar steam generation system were reviewed and analyzed respectively. Based on their functions, the advantages of the fibrous materials such as diversified functions, light weight, low cost and ease of processing were elaborated, demonstrating fibrous materials' excellent performance as the main raw materials for the interfacial solar steam generation system. This paper concluded with an outlook on the challenges in using fibrous materials for the interfacial solar steam generation system and possible solutions to improve the practicality of the system. It is anticipated that this review paper can benefit the widespread applications of fibrous materials in interfacial solar steam systems.

Key words: photothermal conversion, fibrous material, interfacial evaporation, water transportation, thermal management, salt rejection, interfacial solar steam generation system

CLC Number: 

  • TS101.3

Fig.1

Evolution of solar steam generation system"

Fig.2

Schematic diagram of interfacial solar steam generation system"

Fig.3

Schematic diagram of photothermal desalination setup"

Fig.4

Mechanism of thermoelectric power generation"

Fig.5

SEM images of activated carbon-juncus effuses solar steam generation system. (a)Cross-section; (b)Surface;(c)Radial section"

Tab.1

Performance of photothermal conversion systems using fibrous materials"

光热转换材料 输水材料 蒸发效
率/%
隔热材料 热导率/
(W·(m·K)-1)
蒸发速率/
(kg·m-2·h-1)
稳定性 参考
文献
石墨烯/碳纳米管 石墨烯/
纳米原纤化纤维素
85.6 石墨烯/
纳米原纤化纤维素
0.06 1.25 循环50 次 [43]
还原氧化石墨烯 植物纤维海绵 88.8 0.103 1.375 稳定20 d [15]
硫化铜 94.9 棉棒 0.04 1.63 循环15次 [40]
锦纶/碳布 非织造棉织物 83.1 聚苯乙烯泡沫 0.029~0.039 1.24 循环100 次 [44]
MXene 滤膜 71 聚苯乙烯泡沫 1.31 稳定200 h [34]
还原氧化石墨烯 聚丙烯腈泡沫 0.06 1.47 稳定50 h [4]
还原氧化石墨烯 壳聚糖 86 中空织物 0.08 1.435 2 循环5 次 [32]
碳化纤维素纸 炭化纤维素纸 65.8 炭化纤维素纸 0.031 0.959 循环20 次 [26]
活性炭纤维毡 活性炭纤维毡 79.4 隔热泡沫 0.095 1.22 循环20 次 [25]
Fe3O4 聚偏二氟乙烯/
六氟丙烯复合膜
75 聚偏二氟乙烯/
六氟丙烯复合膜
1.16 循环20 次 [33]
还原氧化石墨烯 纸纤维 89.2 发泡聚乙烯泡沫 1.14 [45]
碳纳米管 聚苯硫醚/
原纤化纤维素
95 聚苯硫醚/
原纤化纤维素
0.046 7 1.34 稳定10 h [46]
碳纳米管/聚丙烯腈 碳纳米管/聚丙烯腈 81 聚苯乙烯泡沫 0.04 1.44 循环15 次 [47]
炭黑涂层聚甲
基丙烯酸甲酯
聚丙烯腈/棉 72 0.03 92 1.3 稳定16 d [48]
蚀刻碳纤维布/
碳化聚苯胺纳米线
蚀刻碳纤维布/
炭化聚苯胺纳米线
93.7 聚氨酯泡沫 0.018~0.024 1.425 5 循环24 次 [49]
超亲水炭化绿藻 超亲水炭化绿藻 83 超亲水炭化绿藻 0.042 1.35 稳定15 d [42]
炭化蘑菇 炭化蘑菇 78 炭化蘑菇 0.45 1.475 稳定8 h [50]
金纳米颗粒 聚对苯撑苯并
二口恶唑纳米纤维
83 聚对苯撑苯并二
口恶唑纳米纤维
0.23 1.424 稳定100 min [13]
二氧化硅/羧化多壁
碳纳米管/聚丙烯腈
82.58 聚苯乙烯泡沫 1.28 稳定20 h [17]
氧化石墨烯 聚乙烯醇 90 聚乙烯醇 0.107 1.4 稳定5 h [31]
炭化浒苔 亲水非织造布 84 聚苯乙烯泡沫 0.04 1.3 稳定8 h [30]
[1] ZHOU L, LI X Q, NI G W, et al. The revival of thermal utilization from the sun: interfacial solar vapor generation[J]. National Science Review, 2019, 6(3):562-578.
doi: 10.1093/nsr/nwz030
[2] GUO Y, YU G. Engineering hydrogels for efficient solar desalination and water purification[J]. Accounts of Materials Research, 2021, 2(5):374-384.
doi: 10.1021/accountsmr.1c00057
[3] MU X, GU Y, WANG P, et al. Energy matching for boosting water evaporation in direct solar steam generation[J]. Solar RRL, 2020, 4(10):2000341.
doi: 10.1002/solr.v4.10
[4] ZHANG Q, YANG H, XIAO X, et al. A new self-desalting solar evaporation system based on a vertically oriented porous polyacrylonitrile foam[J]. Journal of Materials Chemistry A, 2019, 7(24):14620-14628.
doi: 10.1039/C9TA03045J
[5] WANG F, HU Z, FAN Y, et al. Salt-rejection solar absorbers based on porous ionic polymers nanowires for desalination[J]. Macromolecular Rapid Communications, 2021, 42(4):2000536.
doi: 10.1002/marc.v42.4
[6] WANG F, LU N, WANG S, et al. Salt-resistant solar still based on hollow sphere porous ionic polymers for desalination[J]. Microporous and Mesoporous Materials, 2021, 314:110871.
doi: 10.1016/j.micromeso.2020.110871
[7] 章潇慧, 于浩然. 光热转换材料的研究现状与发展趋势[J]. 新材料产业, 2019 (3):56-67.
ZHANG Xiaohui, YU Haoran. Status and trends of research on photothermal conversion materials[J]. Advanced Materials Industry, 2019 (3):56-67.
[8] 黄金, 冯婷, 高助威, 等. 基于静电纺丝实验法的氧化石墨烯复合无纺布光热转换性能的特性研究[J]. 发光学报, 2020, 41(2):134-139.
HUANG Jin, FENG Ting, GAO Zhuwei, et al. Characteristics of photothermal conversion performance of graphene oxide composite non-woven fabric based on electrospinning experiment[J]. Chinese Journal of Luminescence, 2020, 41(2):134-139.
[9] 陈宇超, 沙畅畅, 王心妤, 等. 基于光热转换的吸收材料与转换机理研究进展[J]. 能源研究与利用, 2019 (4):23-31,55.
CHEN Yuchao, SHA Changchang, WANG Xinyu, et al. Research progress on absorption materials and conversion mechanism based on photothermal conver-sion[J]. Energy Research & Utilization, 2019 (4):23-31,55.
[10] 沙畅畅, 陈宇超, 王心妤, 等. 太阳能驱动水蒸发装置中的碳基光吸收材料的研究进展[J]. 石油化工高等学校学报, 2019, 32(5):1-7.
SHA Changchang, CHEN Yuchao, WANG Xinyu, et al. Research progress of carbon-based solar absorbers for solar driven water evaporation equipment[J]. Journal of Petrochemical Universities, 2019, 32(5):1-7.
[11] 赵建玲, 马晨雨, 李建强, 等. 基于全光谱太阳光利用的光热转换材料研究进展[J]. 材料工程, 2019, 47(6):11-19.
ZHAO Jianling, MA Chenyu, LI Jianqiang, et al. Research progress in photothermal conversion materials based on full spectrum sunlight utilization[J]. Journal of Materials Engineering, 2019, 47(6):11-19.
[12] TAO P, NI G, SONG C Y, et al. Solar-driven interfacial evaporation[J]. Nature Energy, 2018, 3(12):1031-1041.
doi: 10.1038/s41560-018-0260-7
[13] CHEN M L, WU Y F, SONG W X, et al. Plasmonic nanoparticle-embedded poly (p-phenylene benzobiso-xazole) nanofibrous composite films for solar steam generation[J]. Nanoscale, 2018, 10(13):6186-6193.
doi: 10.1039/C8NR01017J
[14] CHEN C, KUANG Y, HU L. Challenges and opportunities for solar evaporation[J]. Joule, 2019, 3(3):683-718.
doi: 10.1016/j.joule.2018.12.023
[15] CHEN T, WANG S, WU Z, et al. A cake making strategy to prepare reduced graphene oxide wrapped plant fiber sponges for high-efficiency solar steam generation[J]. Journal of Materials Chemistry A, 2018, 6(30):14571-14576.
doi: 10.1039/C8TA04420A
[16] BUNDSCHUH J, KACZMARCZYK M, GHAFFOUR N, et al. State-of-the-art of renewable energy sources used in water desalination: present and future prospects[J]. Desalination, 2021, 508:115035.
doi: 10.1016/j.desal.2021.115035
[17] QI Q, WANG W, WANG Y, et al. Robust light-driven interfacial water evaporator by electrospinning SiO2/MWCNTs-COOH/PAN photothermal fiber memb-rane[J]. Separation and Purification Technology, 2020, 239:116595.
doi: 10.1016/j.seppur.2020.116595
[18] WILSON H M, TUSHAR, RAHEMAN A R S, et al. Plant-derived carbon nanospheres for high efficiency solar-driven steam generation and seawater desalination at low solar intensities[J]. Solar Energy Materials and Solar Cells, 2020, 210:110489.
doi: 10.1016/j.solmat.2020.110489
[19] JIANG T, HE J, SUN L, et al. Highly efficient photothermal sterilization of water mediated by prussian blue nanocages[J]. Environmental Science: Nano, 2018, 5(5):1161-1168.
doi: 10.1039/C7EN01245D
[20] NEUMANN O, FERONTI C, NEUMANN A D, et al. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles[J]. Proceedings of the National Academy of Sciences, 2013, 110(29):11677-11681.
doi: 10.1073/pnas.1310131110
[21] RAVAGHI-ARDEBILI Z, MANENTI F, CORBETTA M, et al. Biomass gasification using low-temperature solar-driven steam supply[J]. Renewable Energy, 2015, 74:671-680.
doi: 10.1016/j.renene.2014.07.021
[22] YANG P, LIU K, CHEN Q, et al. Solar-driven simultaneous steam production and electricity generation from salinity[J]. Energy & Environmental Science, 2017, 10(9):1923-1927.
[23] LAO J, WU S, GAO J, et al. Electricity generation based on a photothermally driven Ti3C2Tx MXene nanofluidic water pump[J]. Nano Energy, 2020, 70:104481.
doi: 10.1016/j.nanoen.2020.104481
[24] HUANG J, HE Y, HU Y, et al. Coupled photothermal and joule-heating process for stable and efficient interfacial evaporation[J]. Solar Energy Materials and Solar Cells, 2019, 203:110156.
doi: 10.1016/j.solmat.2019.110156
[25] LI H R, HE Y R, HU Y W, et al. Commercially available activated carbon fiber felt enables efficient solar steam generation[J]. ACS Applied Materials & Interfaces, 2018, 10(11):9362-9368.
[26] LIN X F, YANG M J, HONG W, et al. Commercial fiber products derived free-standing porous carbonized-membranes for highly efficient solar steam genera-tion[J]. Frontiers in Materials, 2018, 5:8.
doi: 10.3389/fmats.2018.00008
[27] NI G, ZANDAVI S H, JAVID S M, et al. A salt-rejecting floating solar still for low-cost desalination[J]. Energy & Environmental Science, 2018, 11(6):1510-1519.
[28] EOM W, SHIN H, AMBADE R B, et al. Large-scale wet-spinning of highly electroconductive MXene fibers[J]. Nature Communications, 2020, 11(1):7.
doi: 10.1038/s41467-019-13787-x
[29] WU X, GAO T, HAN C, et al. A photothermal reservoir for highly efficient solar steam generation without bulk water[J]. Science Bulletin, 2019, 64(21):1625-1633.
doi: 10.1016/j.scib.2019.08.022
[30] YANG L, CHEN G L, ZHANG N, et al. Sustainable biochar-based solar absorbers for high-performance solar-driven steam generation and water purification[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(23):19311-19320.
[31] GUO X X, GAO H, WANG S Y, et al. Scalable, flexible and reusable graphene oxide-functionalized electrospun nanofibrous membrane for solar photothermal desalination[J]. Desalination, 2020, 488:9.
[32] WANG F, WEI D Y, LI Y Z, et al. Chitosan/reduced graphene oxide-modified spacer fabric as a salt-resistant solar absorber for efficient solar steam generation[J]. Journal of Materials Chemistry A, 2019, 7(31):18311-18317.
doi: 10.1039/C9TA05859A
[33] LI W P, CHEN Y Q, YAO L, et al. Fe3O4/PVDF-HFP photothermal membrane with in-situ heating for sustainable, stable and efficient pilot-scale solar-driven membrane distillation[J]. Desalination, 2020, 478:10.
[34] ZHAO J Q, YANG Y W, YANG C H, et al. A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination[J]. Journal of Materials Chemistry A, 2018, 6(33):16196-16204.
doi: 10.1039/C8TA05569F
[35] ZHOU Q, LI H, LI D, et al. A graphene assembled porous fiber-based Janus membrane for highly effective solar steam generation[J]. Journal of Colloid and Interface Science, 2021, 592:77-86.
doi: 10.1016/j.jcis.2021.02.045
[36] GAO M, ZHU L, PEH C K, et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy produc-tion[J]. Energy & Environmental Science, 2019, 12(3):841-864.
[37] HE L, CHAOJI C, GUANG C, et al. High-performance solar steam device with layered channels: artificial tree with a reversed design[J]. Advanced Energy Materials, 2018, 8(8):1701616.
doi: 10.1002/aenm.v8.8
[38] ZHANG Q, REN L, XIAO X, et al. Vertically aligned Juncus effusus fibril composites for omnidirectional solar evaporation[J]. Carbon, 2020, 156:225-233.
doi: 10.1016/j.carbon.2019.09.067
[39] ZHANG Q, HU R, CHEN Y, et al. Banyan-inspired hierarchical evaporators for efficient solar photothermal conversion[J]. Applied Energy, 2020, 276:115545.
doi: 10.1016/j.apenergy.2020.115545
[40] WU X, ROBSON M E, PHELPS J L, et al. A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation[J]. Nano Energy, 2019, 56:708-715.
doi: 10.1016/j.nanoen.2018.12.008
[41] ZHANG Y, XIONG T, NANDAKUMAR D K, et al. Structure architecting for salt-rejecting aolar interfacial desalination to achieve high-performance evaporation with in situ energy generation[J]. Advanced Science, 2020, 7(9):1903478.
doi: 10.1002/advs.v7.9
[42] LI J, ZHOU X, ZHANG J, et al. Migration crystallization device based on biomass photothermal materials for efficient salt-rejection solar steam generation[J]. ACS Applied Energy Materials, 2020, 3:3024-3032.
doi: 10.1021/acsaem.0c00126
[43] LI Y J, GAO T T, YANG Z, et al. 3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination[J]. Advanced Materials, 2017, 29(26):8.
[44] JIN Y, CHANG J, SHI Y, et al. A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation[J]. Journal of Materials Chemistry A, 2018, 6(17):7942-7949.
doi: 10.1039/C8TA00187A
[45] GUO A, MING X, FU Y, et al. Fiber-based, double-sided, reduced graphene oxide films for efficient solar vapor generation[J]. ACS Applied Materials & Interfaces, 2017, 9(35):29958-29964.
[46] HUANG H, ZHAO L, YU Q, et al. Flexible and highly efficient bilayer photothermal paper for water desalination and purification: self-floating, rapid water transport, and localized heat[J]. ACS Applied Materials and Interfaces, 2020, 12(9):11204-11213.
doi: 10.1021/acsami.9b22338
[47] ZHU B, KOU H, LIU Z, et al. Flexible and washable CNT-embedded PAN nonwoven fabrics for solar-enabled evaporation and desalination of seawater[J]. ACS Applied Materials & Interfaces, 2019, 11(38):35005-35014.
[48] XU W, HU X, ZHUANG S, et al. Flexible and salt resistant janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials, 2018, 8(14):1702884.
doi: 10.1002/aenm.v8.14
[49] WANG K, HUO B, LIU F, et al. In situ generation of carbonized polyaniline nanowires on thermally-treated and electrochemically-etched carbon fiber cloth for high efficient solar seawater desalination[J]. Desalination, 2020, 481:114303.
doi: 10.1016/j.desal.2019.114303
[50] XU N, HU X Z, XU W C, et al. Mushrooms as eefficient solar steam-generation devices[J]. Advanced Materials, 2017, 29(28):5.
[1] CAO Yuanming, ZHENG Mi, LI Yifei, ZHAI Wangyi, LI Liyan, CHANG Zhuningzi, ZHENG Min. Preparation of MoS2/polyurethane composite fibrous membranes and their photothermal conversion properties [J]. Journal of Textile Research, 2021, 42(09): 46-51.
[2] FANG Jian, REN Song, ZHANG Chuanxiong, CHEN Qian, XIA Guangbo, GE Can. Electroactive fibrous materials for intelligent wearable textiles [J]. Journal of Textile Research, 2021, 42(09): 1-9.
[3] CHEN Yali, ZHAO Guomeng, REN Lipei, PAN Luqi, CHEN Bei, XIAO Xingfang, XU Weilin. Preparation and performance of aramid fabric-based interfacial photothermal evaporation materials [J]. Journal of Textile Research, 2021, 42(08): 115-121.
[4] . Shape of fibrous materials: its significant effects and findings [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(2): 1-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[7] PAN Xu-wei;GU Xin-jian;HAN Yong-sheng;CHENG Yao-dong. Research on quick response of apparel supply chain for collaboration[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 54 -57 .
[8] HUANG Xiao-hua;SHEN Ding-quan. Degumming and dyeing of pineapple leaf fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 75 -77 .
[9] WANG Ju-ping;YIN Jia-min;PENG Zhao-qing;ZHANG Feng. Ultrasonic wave aided enzymatic washing of reactive dyed fabrics[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 93 -95 .
[10] ZHONG Zhi-li;WANG Xun-gai. Application prospect of nanofibers[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 107 -110 .