Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (02): 60-64.doi: 10.13475/j.fzxb.20201008005

• Textile Engineering • Previous Articles     Next Articles

Exploration of image-based testing method for yarn twist in air-jet vortex spinning

LI Hao, XING Mingjie(), SUN Zhihao, WU Yao   

  1. College of Textile and Clothing, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2020-10-29 Revised:2020-11-19 Online:2021-02-15 Published:2021-02-23
  • Contact: XING Mingjie E-mail:xmjqdu@126.com

Abstract:

In order to find an effective method suitable for yarn twist test produced by air-jet vortex spinning, with the help of scanning electron microscope, the twist of the yarn was tested by the appearance and cross-section images of the air-jet vortex spinning yarns, based on the comparative analysis of yarns made via air-jet vortex spinning and the traditional ring-spinning. Photoshop was used to process the cross-sectional images of the air-jet vortex spinning yarn, determining the outer layer and the inner layer of the yarns. The relationship between the ratio of inner and outer fibers of air-jet spun yarns and twists were analyzed. The research results show that due to the special structure of the air-jet vortex spinning yarn, the traditional twisting and untwisting method is not suitable for the air-jet vortex spinning yarn twist test. It is feasible to test the twist by the image of air jet vortex spinning yarn. There is a negative correlation between the ratio of the number of fibers in the inner and outer layers of the air-jet vortex spinning yarn and its twist.

Key words: air-jet vortex spinning yarn, yarn structure, twist, ratio of number of fibers in inner and outer layers, image

CLC Number: 

  • TS104.2

Fig.1

Picture of yarn appearance under electron microscope(×57)"

Fig.2

Structure model of air-jet vortex spinning yarn"

Fig.3

Test of yarn twist by image(×200)"

Fig.4

Ideal model of yarn surface and schematic diagram of twist angle"

Tab.1

Image method and counting method to test twist of air-jet vortex yarn"

线密度/tex 平均捻系数
图像法 计数法
36 309.6 310.4
38 330.6 328.1
40 344.8 348.6

Fig.5

Cross section of air-jet vortex yarn under electron microscope(×350)"

Tab.2

Test results of internal and external fiber ratio of sample yarn"

试样编号 Onion指数 内外层纤维数量比 标准差
1# 0.83 2.95 0.069
2# 0.85 2.90 0.089
3# 0.76 2.67 0.036

Tab.3

Test results of twist coefficient of sample yarn"

纱线线密
度/tex
捻系数 内外层纤维
数量比
捻系数与
线密度比
36 306.0 2.51 8.50
36 309.6 2.48 8.60
36 312.1 2.45 8.67
38 330.6 2.44 8.70
38 323.0 2.51 8.50
38 333.3 2.42 8.77
40 344.8 2.47 8.62
40 339.6 2.51 8.49
40 319.2 2.52 7.98
平均值 38 324.2 2.48 8.54
标准差 1.732 13.701 0.036 0.230

Tab.4

Pearson correlation coefficient results"

类别 线密度 捻系数 内外层纤
维数量比
捻系数与
线密度比
线密度 1
捻系数 0.800** 1
内外层纤维数量比 0.247 -0.222 1
捻系数与线密度比 -0.426 0.203 -0.750* 1
[1] 仲亚红. 基于不同几何形态的纤维喷气涡流纺成纱性能的研究[D]. 青岛:青岛大学, 2015: 13-19.
ZHONG Yahong. Study on yarn properties of fiber air-jet vortex spinning based on different geometric shapes[D]. Qingdao: Qingdao University, 2015: 13-19.
[2] 章友鹤, 朱丹萍, 赵连英, 等. 新型纺纱的技术进步及产品开发[J]. 纺织导报, 2017(1):58-61.
ZHANG Youhe, ZHU Danping, ZHAO Lianying, et al. Advancement of new spinning technologies and related product development[J]. China Textile Leader, 2017(1):58-61.
[3] 姚穆. 纺织材料学[M]. 3版. 北京: 中国纺织出版社, 2009: 129-146.
YAO Mu. Textile materials science [M]. 3rd ed. Beijing: China Textile & Apparel Press, 2009: 129-146.
[4] 张超. 涡流纺流场的模拟及机理的研究[D]. 青岛:青岛大学, 2008: 6-13.
ZHANG Chao. Study on the simulation and mechanism of vortex spinning flow field[D]. Qingdao: Qingdao University, 2008: 6-13.
[5] 王涛. 村田喷气纺与立达喷气纺的对比[C]// 中国纺织工程学会新型纺纱专业委员会. 第十七届全国新型纺纱学术交流会论文集. 北京:中国纺织工程学会, 2014: 151-155.
WANG Tao. Comparison of Murata air-jet spinning and Rieter air-jet spinning[C]// New Type Spinning Committee of China Textile Engineering Society. Proceedings of the 17th national symposium on new type spinning. Beijing:China Textile Engineering Society, 2014: 151-155.
[6] GULDEMET Basal, OXENHAM William. Vortex spun yarn vs air-jet spun yarn[J]. Autex Research Journal, 2003(3):96-101.
[7] 裴泽光, 俞兆昇, 郁崇文. 影响纯涤纶喷气涡流纱强度的因素[J]. 纺织学报, 2008,29(12):22-24.
PEI Zeguang, YU Zhaosheng, YU Chongwen. Effect of parameters on tenacity of polyester MVS yarn[J]. Journal of Textile Research, 2008,29(12):22-24.
[8] 逄邵伟, 赵娜, 赵学玉, 等. 喷气涡流纺缝纫线纱线结构分析[J]. 青岛大学学报(工程技术版), 2018,33(3):125-129.
PANG Shaowei, ZHAO Na, ZHAO Xueyu, et al. Analysis on the yarn structure of MVS sewing thread[J]. Journal of Qingdao University (E&T), 2018,33(3):125-129.
[9] 欧阳微微, 李艳清, 田伟, 等. 喷气涡流纺羊绒/涤纶混纺纱纤维径向分布[J]. 现代纺织技术, 2020,28(1):31-35.
OUYANG Weiwei, LI Yanqing, TIAN Wei, et al. Radial distribution of cashmere/polyester blended yarn by jet vortex spinning[J]. Advanced Textile Technology, 2020,28(1):31-35.
[10] 赵娜, 赵学玉, 丁莉燕, 等. 喷气涡流纺缝纫线的开发与性能测试[J]. 成都纺织高等专科学校学报, 2017,34(4):97-101.
ZHAO Na, ZHAO Xueyu, DING Liyan, et al. Development and performance test of MVS sewing thread[J]. Journal of Chengdu Textile College, 2017,34(4):97-101.
[1] . Yarn defect detection based on improved image threshold segmentation algorithm [J]. , 2021, 42(03): 0-0.
[2] MENG Shuo, XIA Xuwen, PAN Ruru, ZHOU Jian, WANG Lei, GAO Weidong. Detection of fabric density uniformity based on convolutional neural network [J]. Journal of Textile Research, 2021, 42(02): 101-106.
[3] CHEN Meiyu, LIU Yulin, HU Geming, SUN Runjun. Effect of wrapping and twisting on mechanical properties of air-jet vortex spun yarns [J]. Journal of Textile Research, 2021, 42(01): 59-66.
[4] MA Liyun, WU Ronghui, LIU Sai, ZHANG Yuze, WANG Jun. Preparation and electrical properties of triboelectric nanogenerator based on wrapped composite yarn [J]. Journal of Textile Research, 2021, 42(01): 53-58.
[5] WANG Ting, GU Bingfei. Automatic identification of young women's neck-shoulder shapes based on images [J]. Journal of Textile Research, 2020, 41(12): 111-117.
[6] QIU Kebin, CHEN Weiguo, ZHOU Hua, YING Shuangshuang. Research and development of textile color measurement based on imaging technologies [J]. Journal of Textile Research, 2020, 41(09): 155-161.
[7] LI Tao, DU Lei, HUANG Zhenhua, JIANG Yuping, ZOU Fengyuan. Review on pattern conversion technology based on garment flat recognition [J]. Journal of Textile Research, 2020, 41(08): 145-151.
[8] AN Na, ZHANG Jianlei, CHENG Longdi. Impact of fast fashion brand image on purchasing intention [J]. Journal of Textile Research, 2020, 41(08): 108-114.
[9] ZHENG Tianzi, WANG Jianping. Perceptual research on printing pattern design for clothing [J]. Journal of Textile Research, 2020, 41(08): 101-107.
[10] SHAO Jinxin, ZHANG Baochang, CAO Jipeng. Fiber detection and recognition technology in cotton fiber carding process based on image processing and deep learning [J]. Journal of Textile Research, 2020, 41(07): 40-46.
[11] QIU Lijun, CHEN Lihong. Quantitative evaluation of value creation indices for apparel brand image based on entropy method [J]. Journal of Textile Research, 2020, 41(07): 160-166.
[12] LI Peng, WAN Zhenkai, JIA Minrui. Damage monitoring of composite materials based on twist energy of carbon nanotube yarns [J]. Journal of Textile Research, 2020, 41(04): 58-63.
[13] WANG Zexia, CHEN Ge, CHEN Zhenzhong. Surface defect recognition of chemical fiber yarn packages based on improved convolutional neural network [J]. Journal of Textile Research, 2020, 41(04): 39-44.
[14] LU Hao, CHEN Yuan. Surface defect detection method of carbon fiber prepreg based on machine vision [J]. Journal of Textile Research, 2020, 41(04): 51-57.
[15] DU Qinying, CHEN Shu, CHEN Lihong. Effect of clothing brand image on consumer purchase and communication willingness on WeChat platform [J]. Journal of Textile Research, 2020, 41(04): 149-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!