Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (08): 71-75.doi: 10.13475/j.fzxb.20201101605

• Textile Engineering • Previous Articles     Next Articles

Investigation on distribution of fiber accelerated points in drafting zone of ring spinner based on cut-weighing method

GUO Minghua, LIU Xinjin()   

  1. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2020-11-09 Revised:2021-03-31 Online:2021-08-15 Published:2021-08-24
  • Contact: LIU Xinjin E-mail:liuxinjin2006@163.com

Abstract:

The distribution of fiber accelerated points in the drafting zone of the ring spinning frame was studied. 29.2, 22.4 and 18.2 tex cotton yarns were spun on the CCZ-X three-roller dual-zone drafting spinning frame, and corresponding quality distribution of the strands in the drafting zone were tested by equal length cutting and weighing method. The quality change distribution of the strands in the drafting zone of the ring spinning machine was used to characterize the distribution of accelerated points, and corresponding distribution lines of fiber accelerated point distribution in the drafting zone for the three yarns are obtained and analyzed. The results show that the equal length cutting and weighing method can obtain the position of the fiber accelerated point distribution in the drafting zone. In this experiment of fiber accelerated point distribution in the drafting zone, the fiber in the strands is found to be relatively concentrated at a distance of 20 mm from the front jaws of the front roller. With the increase of the draft ratio in the front zone, the position of the fiber accelerated point becomes unstable and disperse, and away from the front roller front clamp mouth.

Key words: drafting zone, distribution of accelerated points, equal length cutting and weighing method, mass distribution, spinning frame, yarn quality

CLC Number: 

  • TS131.9

Fig.1

Picture of CCZ-X spinning machine"

Fig.2

Drafting structure diagram of CCZ-X spinning machine"

Fig.3

Fiber quality distribution curve in draft zone"

Tab.1

Spinning parameters of 3 cotton yarns"

线密度/
tex
牵伸倍数 捻系
前区钳口
隔距/mm
中心距
前区 后区
29.2 14.54 1.28 350 3.5 50 mm×50 mm
22.4 18.91 1.28 380 3.0 50 mm×50 mm
18.2 23.28 1.28 400 3.0 50 mm×50 mm

Tab.2

Quality distribution of 3 cotton yarns"

牵伸区 29.2 tex 22.4 tex 18.2 tex
距后罗
拉钳口
线距离/
mm
纤维质
量/mg
距后罗
拉钳口
线距离/
mm
纤维质
量/mg
距后罗
拉钳口
线距离/
mm
纤维质
量/mg
5 2.4 5 2.4 5 2.6
10 2.4 10 2.4 10 2.6
15 2.3 15 2.5 15 2.4
20 2.3 20 2.5 20 2.4
后牵伸区 25 2.4 25 2.5 25 2.6
30 2.2 30 2.5 30 2.4
35 2.2 35 2.3 35 2.4
40 2.2 40 2.4 40 2.5
45 2.3 45 2.3 45 2.5
50 2.0 50 2.3 50 2.4
55 2.1 55 2.4 55 2.5
60 2.2 60 2.3 60 2.4
65 2.3 65 2.4 65 2.4
70 2.3 70 2.3 70 2.4
前牵伸区 75 2.3 75 2.2 75 2.5
80 2.0 80 1.9 80 1.9
85 1.6 85 1.4 85 1.3
90 1.2 90 0.9 90 1.1
95 0.5 95 0.4 95 0.4
100 0.2 100 0.2 100 0.1

Fig.4

Curves of fiber quality change in back drafting zone of 29.2 tex cotton yarn"

Fig.5

Curves of fiber quality change in front drafting zone of 29.2 tex cotton yarn"

Fig.6

Curves of fiber quality change in back drafting zone of 22.4 tex cotton yarn"

Fig.7

Curves of fiber quality change in front drafting zone of 22.4 tex cotton yarn"

Fig.8

Curves of fiber quality change in back drafting zone of 18.2 tex cotton yarn"

Fig.9

Curves of fiber quality change in front drafting zone of 18.2 tex cotton yarn"

[1] 孙伯勇, 邵伟华, 章友鹤. 对棉纺高效工艺的认识与讨论[J]. 棉纺织技术, 2007, 35(6):58-62.
SUN Boyong, SHAO Weihua, ZHANG Youhe. Discussion of high-effect processing of cotton spinning[J]. Cotton Textile Technology, 2007, 35(6):58-62.
[2] 刘国涛. 现代棉纺技术基础[M]. 北京: 中国纺织出版社, 1999:23-57.
LIU Guotao. Modern cotton spinning technology foundation [M]. Beijing: China Textile & Apparel Press, 1999:23-57.
[3] 李瑛慧, 谢春萍, 刘新金. 基于纤维变速点分布实验的成纱条干不匀研究[J]. 纺织学报, 2016, 37(8):32-36,58.
LI Yinghui, XIE Chunping, LIU Xinjin. Study on yarn unevenness based on experiment of fibers accelerated-point distribution[J]. Journal of Textile Research, 2016, 37(8):32-36,58.
[4] 邢声远. 细纱机双皮圈牵伸中变速点分布的研究[J]. 北京纺织, 1981(1):26-32.
XING Shengyuan. Study on the distribution of variable speed points in double apron drafting of spinning frame[J]. Beijing Textile, 1981(1):26-32.
[5] 姚杰, 叶国铭, 陈人哲. 牵伸区浮游纤维变速的数学建模与仿真[J]. 东华大学学报(自然科学版), 2006, 32(4):1-5.
YAO Jie, YE Guoming, CHEN Renzhe. Modeling and simulating the motion of floating fibers during draf-ting[J]. Journal of Donghua University (Natural Science), 2006, 32(4):1-5.
[6] 苏玉恒, 严广松, 任家智. 牵伸区浮游纤维动态行为的随机模拟[J]. 纺织学报, 2011, 32(3):30-35.
SU Yuheng, YAN Guangsong, REN Jiazhi. Stochastic simulation on dynamic behavior of floating fibers in roll drafting process[J]. Journal of Textile Research, 2011, 32(3):30-35.
[7] 曲华洋, 谢春萍, 刘新金, 等. 超大牵伸条件下前牵伸区内纤维变速点分布对成纱质量的影响[J]. 上海纺织科技, 2017, 45(5):38-41.
QU Huayang, XIE Chunping, LIU Xinjin, et al. Effect of fibers accelerated-point distribution of front draft zone on yarn quality on the super high draft spinning frame[J]. Shanghai Textile Science & Technology, 2017, 45(5):38-41.
[8] 严广松, 路允芳, 郁崇文. 牵伸区浮游纤维变速点分布的理论研究[J]. 纺织学报, 2007, 28(9):23-26.
YAN Guangsong, LU Yunfang, YU Chongwen. Theoretical study on the distribution of accelerated points of floating fibers in the drafting zone[J]. Journal of Textile Research, 2007, 28(9):23-26.
[9] 东华大学. 一种牵伸过程中纤维变速点位置的测试方法: 201910619018.2[P]. 2019-10-22.
Donghua University. A test method for the position of the fiber shift point during the drafting process:201910619018.2[P]. 2019-10-22.
[10] 张晓娟, 徐伯俊, 刘新金. 采用多项式拟合的细纱机双区与三区牵伸纤维分布对比[J]. 纺织学报, 2016, 37(4):38-42,53.
ZHANG Xiaojuan, XU Bojun, LIU Xinjin. Fiber distribution comparison of two draft zones ring spinning machine and three draft zones ring spinning machine based on polynomial fitting[J]. Journal of Textile Research, 2016, 37(4):38-42,53.
[1] WU Jiaqing, WANG Ying, HAO Xinmin, GONG Yumei, GUO Yafei. Effect of filament feeding positions on structure and properties of siro-spinning core-spun yarns [J]. Journal of Textile Research, 2021, 42(08): 64-70.
[2] ZHANG Huanhuan, ZHAO Yan, JING Junfeng, LI Pengfei. Yarn evenness measurement based on sub-pixel edge detection [J]. Journal of Textile Research, 2020, 41(05): 45-49.
[3] QIAN Cheng, LIU Yanqing, LIU Xinjin, XIE Chunping, XU Bojun. Simulation and analysis of three-dimensional flow field in four-roller compact spinning system [J]. Journal of Textile Research, 2019, 40(10): 56-61.
[4] LIN Huiting, AKANKWASA Nicholus Tayari, ZHANG Yuze, SHI Qianqian, WANG Jun. Effect of bypass channel on rotor-spun yarn properties in rotor spinning [J]. Journal of Textile Research, 2019, 40(02): 153-158.
[5] ZHA Liugen, XIE Chunping. Prediction of cotton yarn quality based on four-layer BP neural network [J]. Journal of Textile Research, 2019, 40(01): 52-56.
[6] . Simulation of fluid flow in rotor composite spinning unit and analysis on yarn quality [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 26-30.
[7] . Double S curves soft drafting technology [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 34-38.
[8] . Simulating design for draft ratio of back drafting zone on drawing frame [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(04): 39-45.
[9] . Application of compact spinning system in silk spinning frame [J]. Journal of Textile Research, 2016, 37(4): 124-127.
[10] . Mechanism and software development for rainbow segment color yarn knitted fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(08): 47-53.
[11] . Novel method for prediction of quality fluctuation in spinning process [J]. Journal of Textile Research, 2015, 36(04): 37-43.
[12] . Novel complete condensing spinning system with strip groove structure [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(6): 137-141.
[13] . Research on condensed spinning draft system [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(6): 142-146.
[14] ZHOU Suolin. Installation innovation of guide bar on spinning frame [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(1): 124-128.
[15] SHAO Jingfeng;QIN Lanshuang. Development of computer monitoring system of spinning frame based on C/S mode [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(06): 126-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!