Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (09): 131-136.doi: 10.13475/j.fzxb.20201102106

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Grafting modification of polyamide 6 fabric with methyl methacrylate initiated by hydrogen peroxide/ascorbic acid and its properties

CHEN Xiangxiang1, WU Ting2, ZHOU Weitao1,2,3(), SUN Yangyang1, DU Shan1, ZHANG Xiaoli1   

  1. 1. Hennan Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    2. Institute of Textile and Garment Industry, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    3. Collaborative Innovation Center of Henan Province for Textile and Garment Industry, Zhengzhou, Henan 451191, China
  • Received:2020-11-10 Revised:2021-06-08 Online:2021-09-15 Published:2021-09-27
  • Contact: ZHOU Weitao E-mail:weitao_zhou@yahoo.com

Abstract:

In order to tackle the whiteness declination of polyamide 6 fabric after prolonged light exposure, methyl methacrylate (MMA) was grafted onto polyamide 6 (PA6) via hydrogen peroxide/ascorbic acid(H2O2/H2A) as initiator. The effects of grafting time, grafting temperature, initiator and monomer concentration on grafting rate were studied, and the micro morphology, chemical structure, whiteness and wearability of the grafted fabric were characterized. The optimal process conditions were identified as follows: grafting temperature 70 ℃, grafting time 60 min, initiator H2O2/H2A mass fraction 30%, MMA concentration 1.5 mol/L. The fabric surface became rough after grafting with small granular materials. The whiteness index of the modified fabric increased from the previous 58.6 to 70.53 after UV irradiation for 8 h, showing excellent light resistance. The stiffness index of the modified fabric increased from 10.7 to 23.6, and the smoothness increased from 71.7 to 80.3, both contributing to good wearability.

Key words: polyamide 6 fabric, surface modification, initiation system, grafting process, light resistance, wearability, whiteness

CLC Number: 

  • TS156

Fig.1

Effect of reaction time on grafting ratio of PA6 fabrics"

Fig.2

Effect of reaction temperature on grafting ratio of PA6 fabrics"

Fig.3

Effect of initiator mass fraction on grafting ratio of PA6 fabrics"

Fig.4

Effect of MMA concentration on grafting ratio of PA6 fabrics"

Fig.5

SEM images of PA6 with different grafting rates"

Fig.6

Infrared spectra of PA6 fabrics before and after grafting"

Tab.1

Whiteness of PA6 fabric before and after lighting under different grafting ratios"

接枝率/% 白度/%
未光照 光照8 h
0.00 60.62 58.63
0.68 62.22 62.56
1.06 64.15 65.13
2.40 68.94 70.53

Tab.2

Effect of grafting ratio on stiffness and smoothness of PA6 fabric"

接枝率/% 硬挺度 光滑度
0.00 10.7 71.7
0.68 16.8 77.6
1.06 18.9 78.8
2.40 23.6 80.3
[1] 梁冬, 李莉. 锦纶6染色织物条纹产生的原因及控制方法[J]. 化纤与纺织技术, 2009, 12(4):18.
LIANG Dong, LI Li. The causes and control methods for the stripes of nylon 6 dyed fabrics[J]. Chemical Fiber & Textile Technology, 2009, 12(4):18.
[2] 赵倩, 谷晓昱, 姜鹏, 等. 接枝改性尼龙66织物的吸湿性和燃烧成炭性[J]. 印染, 2013, 14(5):5-9.
ZHAO Qian, GU Xiaoyu, JIANG Peng, et al. Moisture absorption and charring properties of grafted nylon 66 fabrics[J]. China Dyeing & Finishing, 2013, 14(5):5-9.
[3] 赵井博, 李胜男, 郑洋洋, 等. 尼龙6/聚碳酸酯共混物的增容研究[J]. 塑料工业, 2018, 46(2):11-14.
ZHAO Jingbo, LI Shengnan, ZHENG Yangyang, et al. Compatibilization of nylon 6/polycarbonate blends[J]. Plastics Industry, 2018, 46(2):11-14.
[4] 孙鹏, 金涛, 田帅, 等. 硅烷偶联剂改性玻璃纤维增强PA6 研究[J]. 化工新型材料, 2016, 44(1):205-207.
SUN Peng, JIN Tao, TIAN Shuai, et al. Study on silane coupling agent modified glass fiber reinforced PA6[J]. New Chemical Materials, 2016, 44(1):205-207.
[5] 陈广新. 聚酰胺6-聚酰胺6T共聚物及其纤维的制备及表征[D]. 上海:东华大学, 2018: 6.
CHEN Guangxin. Preparation and characterization of polyamide 6-polyamide 6T copolymer and its fibers[D]. Shanghai:Donghua University, 2018: 6.
[6] 罗慧如. 活性阴离子聚合制备PA6 纤维及其原位增强改性[D]. 杭州:浙江大学, 2016:4-8.
LUO Huiru. Preparation of PA6 fiber by active anionic polymerization and in-situ reinforcement modification[D]. Hangzhou:Zhejiang University, 2016:4-8.
[7] 胡伟民, 高保娇, 曹林交. 氨基-铈盐氧化还原体系引发对苯乙烯磺酸钠在硅胶微粒表面的接枝聚合[J]. 化学通报, 2013 (12):1098-1104.
HU Weimin, GAO Baojiao, CAO Linjiao. Graft polymerization of sodium p-styrenesulfonate on silica gel particles initiated by amino-cerium redox system[J]. Chemistry Bulletin, 2013 (12):1098-1104.
[8] 江崃, 朱小行. 过硫酸钾-连二亚硫酸钠氧化还原体系在蚕丝接枝增重上的应用[J]. 纺织学报, 2013, 34(1):51-55.
JIANG Lai, ZHU Xiaoxing. Application of potassium persulfate-sodium bisulfite redox system in silk graft weight gain[J]. Journal of Textile Research, 2013, 34(1):51-55.
[9] 张康, 荆蓉, 程飞, 等. 丙烯酰胺与聚乙烯醇的固相接枝共聚[J]. 纺织学报, 2016, 37(12):65-70.
ZHANG Kang, JING Rong, CHENG Fei, et al. Solid graft copolymerization of acrylamide and polyvinyl alcohol[J]. Journal of Textile Research, 2016, 37(12):65-70.
[10] 李梦颖, 赵涛. 尼龙织物的表面改性及其吸湿发热性能[J]. 印染, 2019, 45(23):6-10,25.
LI Mengying, ZHAO Tao. Surface modification of nylon fabric and its moisture absorption and heating properties[J]. China Dyeing & Finishing, 2019, 45(23):6-10, 25.
[11] 桑伟, 周岚, 冯新星, 等. 电子束辐照诱导丙烯酸接枝尼龙66织物的改性研究[J]. 材料工程, 2017, 45(10):111-116.
SANG Wei, ZHOU Lan, FENG Xinxing, et al. Modification of acrylic grafted nylon 66 fabric induced by electron beam irradiation[J]. Journal of Materials Engineering, 2017, 45(10): 111-116.
[12] XIE C, HAN H, HU H, et al. Endurable conductivity of nylon fibers by interfacial grafting and aniline polymerization[J]. Materials Letters, 2018, 218(1):213-216.
doi: 10.1016/j.matlet.2018.01.143
[13] PENG J, QIAN Z, SHENG Z, et al. Flammability and char formation of polyamide 66 fabric: chemical grafting versus pad-dry process[J]. Industrial & Engineering Chemistry Research, 2015, 54(23):6085-6092.
doi: 10.1021/acs.iecr.5b01104
[14] 王雅珍, 朱猛, 董少波, 等. 玻璃纤维表面接枝聚甲基丙烯酸甲酯及其在高密度聚乙烯中的应用[J]. 化学世界, 2021, 62(4):246-250.
WANG Yazhen, ZHU Meng, DONG Shaobo, et al. Polymethyl methacrylate grafted on glass fiber surface and its application in high density polyethylene[J]. Chemical World, 2021, 62(4):246-250.
[15] 王芳, 陈飞荣, 王振贵. 大豆蛋白接枝改性PET功能织物的制备及服用性能[J]. 印染助剂, 2021, 38(3):23-27.
WANG Fang, CHEN Feirong, WANG Zhengui. Preparation and wearability of soybean protein grafted PET functional fabric[J]. Textile Auxiliaries, 2021, 38(3):23-27.
[16] 朱吴兰. 红外光谱法鉴别不同种类的聚酰胺[J]. 塑料, 2009, 38(3):42-44.
ZHU Wulan. Identification of different types of polyamides by infrared spectroscopy[J]. Plastics, 2009, 38(3):42-44.
[17] WANG Yan, ZHANG Xi, YAN Jinliang, et al. Surface modification of hydroxyapatite with poly(methyl methacrylate) via surface-initiated ATRP[J]. Applied Surface Science, 2011, 257(14):6233-6238.
doi: 10.1016/j.apsusc.2011.02.045
[18] 谢南平. 锦氨纶印花白位日晒牢度的影响因素分析[J]. 武汉纺织大学学报, 2013, 26(3):28-30.
XIE Nanping. Analysis of the influencing factors on the white-level sun fastness of nylon printing[J]. Journal of Wuhan Textile University, 2013, 26(3):28-30.
[19] 阎克路. 染整工艺原理[M]. 北京: 中国纺织出版社, 2009: 71.
YAN Kelu. Principles of dyeing and Finishing Technology[M]. Beijing: China Textile & Apparel Press, 2009: 71.
[1] ZHAI Lisha, WANG Zonglei, ZHOU Jingyi, GAO Chong, CHEN Fengxiang, XU Weilin. Research progress of antibacterial materials for textiles and their applications [J]. Journal of Textile Research, 2021, 42(09): 170-179.
[2] CHEN Ke, ZHANG Di, JI Yijun, LE Rongqing, SU Xuzhong. Effect of combed polyester top content on properties of polyester knitted fabrics [J]. Journal of Textile Research, 2021, 42(09): 66-69.
[3] ZHANG Chentian, ZHAO Lianying, GU Xuefeng. Wearability of hollow coffee carbon polyester/cotton blended weft plain knitted fabric [J]. Journal of Textile Research, 2021, 42(03): 102-109.
[4] ZHOU Yingyu, WANG Rui, JIN Gaoling, WANG Wenqing. Research progress of applications of photo-induced surface modification technique in flame retardant fabrics [J]. Journal of Textile Research, 2021, 42(03): 181-189.
[5] ZHAO Huan, PAN Li, CUI Xiaoshuang. Luminescent properties of rare earth aluminate on fabrics [J]. Journal of Textile Research, 2021, 42(03): 136-142.
[6] LIU Libin, LÜ Wangyang, CHEN Wenxing. Catalytic degradation of lignin and lignin model compound by copper complexes in bleaching cotton knitted fabrics [J]. Journal of Textile Research, 2021, 42(03): 1-8.
[7] LIU Shuqiang, WU Jie, WU Gaihong, YIN Xiaolong, LI Fu, ZHANG Man. Surface modification of basalt fiber using nano-SiO2 [J]. Journal of Textile Research, 2020, 41(12): 37-41.
[8] MA Feifei. Stab-resistant performance and wearability of composite materials made by discrete resin molding [J]. Journal of Textile Research, 2020, 41(07): 67-71.
[9] ZHANG Juan, ZHENG Huanda, QIAO Yan, GAO Shihui, ZHENG Laijiu. Scouring and bleaching process for flax roves using supercritical CO2 [J]. Journal of Textile Research, 2020, 41(07): 93-101.
[10] GAO Jing, ZHANG Jun, ZHAO Zeyang, LI Wandi, WANG Jiajun, WANG Lu. Antibacterial durability and wearability of polyester/cotton fabric modified collaboratively by graphene oxide and TiO2/SiO2 [J]. Journal of Textile Research, 2019, 40(10): 120-126.
[11] LIU Bingqian, SHENG Dan, PAN Heng, CAO Genyang. Influence of N,N-dimethylacetamide/CaCl2 system on structure and properties of thermotropic liquid crystal polyarylate fibers [J]. Journal of Textile Research, 2019, 40(04): 15-20.
[12] . Preparation and properties of CNTs/PEDOT:PSS thermoelectric composite textile materials [J]. Journal of Textile Research, 2018, 39(11): 50-55.
[13] . Progress in overall wearability evaluation of disposable diapers [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 175-182.
[14] . Surface modification of polyimide fabric by carboxylation [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 103-107.
[15] . Surface modification of Iron oxide yellow and its application in ultra-high molecular weight polyethylene [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 86-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!