Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (12): 70-75.doi: 10.13475/j.fzxb.20201102406

• Textile Engineering • Previous Articles     Next Articles

Testing method for fabric moisture conductivity based on image technology

XIONG Jingjing1,2, YANG Xue1,2, SU Jing1,2, WANG Hongbo1,2()   

  1. 1. Jiangsu Engineering Technology Research Center for Functional Textiles, Wuxi, Jiangsu 214122, China
    2. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2020-11-11 Revised:2021-09-27 Online:2021-12-15 Published:2021-12-29
  • Contact: WANG Hongbo E-mail:wxwanghb@163.com

Abstract:

In order to improve the test accuracy of the fabric moisture conductivity, fabric wetting images were obtained with the camera based on the traditional spot test. The images were enhanced by homomorphic filtering, and then processed by threshold segmentation and morphological processing. The moisture conductivity area extracted from the fabric image was used to characterize the moisture conductivity of the fabric. The influence of the test parameters such as the test liquid, drip height, drip volume and the number of image samples for stability of the test results was discussed. The results show that this method is faster and more accurate than the traditional test method, and it demonstrates good stability and repeatability. When woven fabrics were used as the test object, under conditions of using 40 μL deionized water as test liquid with 2 cm drop height and 5 repeated tests, the moisture conducting areas show low variation coefficient and exhibit stable results.

Key words: moisture conductivity, homomorphic filtering, fabric wetting image, drop height, image processing technology, test standardization

CLC Number: 

  • TS107

Fig.1

Diagram of experimental device"

Fig.2

Fabric wetting image before(a) and after(b) homomorphic filtering"

Fig.3

Image processing"

Tab.1

Moisture conductivity area of different liquidscm2"

织物原料 刚果红溶液 去离子水 NaCl溶液
涤纶 2.93 2.43 2.38
3.47 3.16 2.98
竹浆纤维 3.52 3.31 3.19
棉/竹浆纤维(50/50) 3.48 3.29 3.09
莫代尔 3.85 3.74 3.62
棉/莫代尔(50/50) 3.71 3.61 3.53

Tab.2

Moisture conductivity area test result of cotton fabric with different drop height"

滴液高度/cm 导湿面积/cm2 导湿面积CV值/%
1 2.93 4.04
2 3.12 3.91
3 3.47 4.31
4 2.97 4.86
5 3.09 6.58
6 2.72 6.67

Fig.4

Diagram of sampling method"

Tab.3

Influence of sampling quantity on moisture conductivity area test results"

样本数量 导湿面积/cm2 导湿面积CV值/%
3 2.93 7.30
4 2.94 5.62
5 2.99 3.92
6 2.98 4.01
7 2.95 4.07
8 2.92 4.15
[1] 赵兵, 王芳, 陈文艳. 基于图像处理井下作业防护织物导湿性能研究[J]. 产业用纺织品, 2016, 34(11):36-40.
ZHAO Bing, WANG Fang, CHEN Wenyan. Study on moisture transfer performance of underground protective fabric based on image processing technique[J]. Technical Textiles, 2016, 34(11):36-40.
[2] 张天祥, 章辉, 韩玉茹. 纺织品吸湿速干功能测试方法的探讨[J]. 纺织标准与质量, 2018(5):7-12.
ZHANG Tianxiang, ZHANG Hui, HAN Yuru. Discussion on test methods of moisture absorbent and quick-drying property of textiles[J]. Textile Standards and Quality, 2018 (5):7-12.
[3] 杜帅, 李岳阳, 王孟涛, 等. 基于改进局部自适应对比法的织物疵点检测[J]. 纺织学报, 2019, 40(2):38-44.
DU Shuai, LI Yueyang, WANG Mengtao, et al. Fabric defect detection based on improved local adaptive contrast method[J]. Journal of Textile Research, 2019, 40(2):38-44.
[4] 陆奕辰, 王蕾, 唐千惠, 等. 应用图像处理的纱线黑板毛羽量检测与评价[J]. 纺织学报, 2018, 39(8):144-149.
LU Yichen, WANG Lei, TANG Qianhui, et al. Detection and evaluation on yarn hairiness of blackboard with image processing[J]. Journal of Textile Research, 2018, 39(8):144-149.
[5] 谢梅娣, 王启明, 黄雅萍, 等. 图像处理测试织物导湿性能的应用研究[J]. 上海纺织科技, 2005, 33(11):62-63.
XIE Meidi, WANG Qiming, HUANG Yaping, et al. Application of image analysis in wet conductibility of fabric[J]. Shanghai Textile Science & Technology, 2005, 33(11):62-63.
[6] 杜文豪, 张慧萍, 晏雄. 运用高速摄影对不同结构参数织物导湿性能研究[J]. 天津纺织科技, 2009(1):12-17.
DU Wenhao, ZHANG Huiping, YAN Xiong. Using HG-camera system to study on the fabric wet permeability of different structure parameters[J]. Tianjin Textile Science & Technology, 2009(1):12-17.
[7] RAJA D, RAMAKRISHNAN G, BABU V R, et al. Comparison of different methods to measure the transverse wicking behavior of fabrics[J]. Journal of Industrial Textiles, 2014, 43(3):366-382.
doi: 10.1177/1528083712456054
[8] 冯相辉. 一种改进的同态滤波图像增强算法[J]. 重庆邮电大学学报(自然科学版), 2020, 32(1):139-145.
FENG Xianghui. An improved homomorphic filtering image enhancement algorithm[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2020, 32(1):139-145.
[9] 程新. 基于同态滤波的图像增强算法研究[D]. 西安:西安邮电大学, 2016:33-40.
CHENG Xin. Image enhancement algorithm based on Homomorphic filtering[D]. Xi'an :Xi'an University of Posts, 2016:33-40.
[10] 杜帅, 李岳阳, 夏风林, 等. 基于十字窗口的经编织物疵点检测[J]. 丝绸, 2019, 56(11):26-31.
DU Shuai, LI Yueyang, XIA Fenglin, et al. Fabric defect detection based on the cross window method[J]. Journal of Silk, 2019, 56(11):26-31.
[11] 张才前, 姚菊明. 织物导湿排汗性能自动测试方法[J]. 纺织学报, 2018, 39(1):45-50.
ZHANG Caiqian, YAO Juming. Automatic moisture transmission and perspiration test method of fabrics[J]. Journal of Textile Research, 2018, 39(1):45-50.
[12] 杜文豪. 运用高速摄影对不同结构参数织物导湿性能的研究[D]. 上海:东华大学, 2009:38-39.
DU Wenhao. Study on wet permeability for the fabric of different structure parameters by using HG-camera system[D]. Shanghai:Donghua Univerity, 2009:38-39.
[13] 刘晓, 周永凯, 张华. 针织物单向导湿性能测试新方法[J]. 纺织导报, 2019(8):89-92.
LIU Xiao, ZHOU Yongkai, ZHANG Hua. A new method for testing unidirectional moisture-transfer ability of knitted fabric[J]. China Textile Leader, 2019 (8):89-92.
[14] 柳伟伟, 胡良平, 贾元, 等. 实验设计中的重复原则[J]. 药学服务与研究, 2010(5):330-334.
LIU Weiwei, HU Liangping, JIA Yuan, et al. Replication principle in experimental design[J]. Pharmaceutical Care and Research, 2010 (5):330-334.
[15] 张雯静, 王鸿博. 静电纺纳米纤维膜拉伸性能取样方法的探讨[J]. 膜科学与技术, 2013(5):34-37.
ZHANG Wenjing, WANG Hongbo. Study on the sampling methods of tensile property of nanofiber membrane by electrospinning[J]. Membrane Science and Technology, 2013(5):34-37.
[16] 颜奥林, 王鸿博, 杜金梅, 等. 纤维素纤维的种类对织物热湿舒适性的影响[J]. 丝绸, 2020, 57(9):17-21.
YAN Aolin, WANG Hongbo, DU Jinmei, et al. Effects of cellulose fiber types on the thermal and moisture comfort of fabrics[J]. Journal of Silk, 2020, 57(9):17-21.
[1] . Structure and moisture conductivity of compact-siro spinning pure polyester yarns [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 38-43.
[2] OUYANG You-sheng;CHEN Yi-ben;PENG Hong;XIE Xiao-bao;PENG Ru-qun. Studies on the test method and assessment criteria of anti-mite and anti-bacterial fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(5): 143-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[3] HUANG Xiao-hua;SHEN Ding-quan. Degumming and dyeing of pineapple leaf fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 75 -77 .
[4] WANG Ju-ping;YIN Jia-min;PENG Zhao-qing;ZHANG Feng. Ultrasonic wave aided enzymatic washing of reactive dyed fabrics[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 93 -95 .
[5] ZHONG Zhi-li;WANG Xun-gai. Application prospect of nanofibers[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 107 -110 .
[6] LUO Jun;FEI Wan-chun. Distribution of the filament number of each cocoon layer in raw silk threads[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 1 -4 .
[7] WAN Zhen-kai;LI Jing-dong. Feature of acoustic emission and failure analysis for three-dimensional braided composite material under compressive load[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 20 -24 .
[8] BAO Xiao-min;WANG Ya-ming. Image segmentation based on the minimum risk Bayes decision[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 33 -36 .
[9] YANG Jian-cheng. Study on the thread guide trench curved surface of a grooved drum[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(3): 4 -7 .
[10] MA Shi-ping. 基于MATLAB的六连杆打纬机构优化设计及仿真[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(3): 40 -42 .