Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (04): 194-202.doi: 10.13475/j.fzxb.20201102509

• Comprehensive Review • Previous Articles     Next Articles

Application research progress in phase change materials for thermal protective clothing

ZHU Xiaorong1, HE Jiazhen1,2(), WANG Min2   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215006, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2020-11-12 Revised:2022-01-13 Online:2022-04-15 Published:2022-04-20
  • Contact: HE Jiazhen E-mail:jzhe@suda.edu.cn

Abstract:

In order to understand and improve the thermal protective performance of thermal protective clothing with phase change materials (PCMs), the application, influencing factors and future research trends of PCMs in thermal protective clothing were summarized in this review paper. The types and characteristics of PCMs were introduced, and the application methods of PCMs in thermal protective clothing using the sealed bag method, spinning method and fabric finishing of microcapsule technology were presented. In addition, the development process of heat transfer model of thermal protective clothing incorporated with PCMs were reviewed. The factors affecting thermal protective performance were summarized from the aspects of material type, phase change temperature, added amount and configuration of PCMs in a multilayer protective clothing. Finally, the future research trends of PCMs in this field were analyzed from the perspectives of researching and developing new PCMs and reducing heat storage release of PCMs.

Key words: thermal protective clothing, phase change material, thermal protective performance, heat transfer model

CLC Number: 

  • TS941.73

Tab.1

Characteristics of different types of phase change materials"

种类 组成 相变温度/℃ 优点 缺点
无机PCM 水合盐 35 导热系数大,蓄热密度大 过冷、易析出
有机PCM 石蜡类烷烃、有机酸 18~40 不过冷、不析出,化学性质稳定 导热系数小,蓄热密度小
多元醇类 24~40 过冷度小,热效率高 高温为塑性晶体,易挥发
混合型PCM 无机和有机复合 -140~670 储能密度大、传热迅速、稳定 材料结构复杂,界面处理较难

Tab.2

Development of heat transfer model for thermal protective clothing with phase change materials"

参考文献 模型特点 重要结论或意义 模型存在的不足
[32] 稳态热流下的简单传热模型 可预测多层织物系统内的温度分布 未涉及皮肤内部的传热
[33] 将人体假想为圆柱体,并在柱体周壁上包覆相变材料 PCM的潜热、熔点等对防护服热防护性能均有影响 只考虑径向导热,未考虑到皮肤烧伤的温度阈值
[34] 能够描述包括PCM层在内的服装各层的热传导 模型中考虑了由于血液灌注引起的皮肤热损伤 未考虑PCM在高温火场温度梯度下性能的变化,未进行实验验证
[35] 附加相变微胶囊多孔织物热湿传递模型 模型中考虑了更加接近实际的PCM 特性 忽略纤维因含水量变化产生的几何形变对热湿传递的影响,假设织物内各项及相变微胶囊分布均匀
[36] 含PCM的多层热防护服的传热模型 实测值与模型输出较为逼近,可用来真实地模拟预测多层消防服的热防护性能 未考虑高温下服装材料的降解吸热或放热效应,忽略了服装材料内的湿份影响
[37] 采用焓法建立相变传热的热数学模型 除分析织物传热外,还可了解穿着背心的人体动态皮肤温度分布和出汗率 只考虑通过覆盖人体表面部分的相变背心的传热来分析背心与体表之间的热流传导
[38] 对包含相变材料在内的仅由热传导引起的一维传热的预测 可量化相变材料对防护性能的影响,模型中服装系统内温度与实验数据吻合 模型中空气层厚度大小近似为织物表面测温热电偶的直径,降低了模型的准确性
[39] 仅考虑PCM填充层(质量和相变温度)的影响 预测相变温度范围较窄的PCM的热缓冲效果 假设整个样品温度均匀,将相变温度固定为特定值
[40] 对嵌入相变材料的服装层间开发的一维传热模型 PCM放置在防水层与隔热内层之间效果更好,厚度越大,热防护效果越好 未对模型进行同等物理边界条件下的实验性验证
[41] 织物-相变材料模型与多节点分段瞬时生物热模型相结合 预测给定环境条件、已知相变材料和服装属性下服装中滞留空气层的温度 模型较复杂,需要已知的初始条件较多
[42] 模拟通过含相变材料的服装层和皮肤层的热传递 模拟了皮肤各层的热传递,考虑了由于血液灌注引起的皮肤热损伤 未考虑材料降解和水分传递热量

Tab.3

Study on configuration of phase change materials in multi-layer fire clothing system"

参考文献 相变层配置方式 相变层材料 研究结论
[34] 外层+相变层+隔热层+空气层+皮肤 未明确指出 嵌入相变材料的防护服具有更好的防护效果,可延缓皮肤温度上升
[36] 配置1:外层+防水透气层+相变层+隔热层+空气
配置2:外层+防水透气层+隔热层+相变层+空气
烷烃、聚氨酯泡沫微胶囊 相变材料层较高的熔点对应着较低的皮肤升温速率;高热流环境下,相变材料置放于隔热层的外侧,反之相反
[38] 外层+防水透气层+隔热层+相变层+舒适层 德国RUBITHERM公司PX52、GR80、PK82材料 相变潜热效应能调节织物层内温度,有效降低消防装备的整体质量
[40] 配置1:外层+防水透气层+相变层+隔热层
配置2:外层+相变层+防水透气层+隔热层
未明确指出 配置1的防护效果较好,相变材料添加质量越大,防护性能越好
[48] 外层+防水透气层+隔热层+舒适层+相变微胶囊层 芯材为石蜡,壁材为密胺树脂高分子材料 系统内热防护性能值提高了50.6%,PCM添加量越多,热防护性能越好
[56] 外层+防水透气层+隔热层+相变层+舒适层 4种固态相变材料 添加了PCM后,消防服每单位面积质量可吸收更多的热能,降低消防员皮肤表面的温度
[55] 配置1:外层+相变层+隔热层+空气层+皮肤
配置2:外层+相变层+空气层+隔热层+空气层+皮肤
未明确指出 配置2防护效果较好;额外的空气层可增加热防护性能,且不会增加系统质量
[42] 配置1:外层+相变层+内层+空气层+皮肤
配置2:外层+相变层+空气层+内层+空气层+皮肤
多种无机水合盐 配置2防护效果较好,且0.17 mm的MgCl2·6H2O热防护性能最佳
[57] 外层+相变层+隔热层+皮肤 癸酸 PCM潜热、质量、熔点和配置方式对热防护服整体均有影响
[1] RAIMUNDO A M, FIGUEIREDO A R. Personal protective clothing and safety of firefighters near a high intensity fire front[J]. Fire Safety Journal, 2009, 44(4): 514-521.
doi: 10.1016/j.firesaf.2008.10.007
[2] LI J, BARKER R L, DEATON A S. Evaluating the effects of material component and design feature on heat transfer in firefighter turnout clothing by a sweating manikin[J]. Textile Research Journal, 2007, 77(2):59-66.
doi: 10.1177/0040517507078029
[3] HE J Z, PARK E, LI J, et al. Physiological and psychological responses while wearing firefighters' protective clothing under various ambient conditions[J]. Textile Research Journal, 2017, 87(8):929-944.
doi: 10.1177/0040517516641364
[4] 邱浩, 王云仪. 消防服多重功能的研究进展综述[J]. 服装学报, 2017, 2(1): 11-16.
QIU Hao, WANG Yunyi. Review on the multi-functions of firefighting clothing[J]. Journal of Clothing Research, 2017, 2(1):11-16.
[5] MEREDITH M, ROGER B, EMIEL D. Relationship between novel design modifications and heat stress relief in structural firefighters' protective clothing[J]. Applied Ergonomics, 2018(70):260-268.
[6] 赵蒙蒙, 李俊, 王云仪. 消防服着装热应力研究进展[J]. 纺织学报, 2012, 33(3): 145-150.
ZHAO Mengmeng, LI Jun, WANG Yunyi. Research progress of heat stress brought to wearer by fire-fighting suit[J]. Journal of Textile Research, 2012, 33(3):145-150.
[7] MONDAL S. Thermo-regulating textiles with phase-change materials[J]. Functional Textiles for Improved Performance, Protection and Health, 2011.DOI: org/10.1533/9780857092878./63.
doi: org/10.1533/9780857092878./63
[8] CHOI K, CHUNG H, LEE B, et al. Clothing temperature changes of phase change material-treated warm-up in cold and warm environments[J]. Fibers and Polymers, 2005, 6(4):343-347.
doi: 10.1007/BF02875673
[9] 吕社辉, 郭元强, 陈鸣才, 等. 复合高分子相变材料研究进展[J]. 高分子材料科学与工程, 2004, 20(3): 37-40.
LÜ Shehui, GUO Yuanqiang, CHEN Mingcai, et al. Progress in studies of polymer composites phase change materials[J]. Polymer Materials Science & Engineering, 2004, 20(3):37-40.
[10] GAO C. Phase-change materials (PCMs) for warming or cooling in protective clothing[J]. Protective Clothing, 2014.DOI: org/10.1533/9781782420408.2.227.
doi: org/10.1533/9781782420408.2.227
[11] 王鑫, 方建华, 刘坪, 等. 相变材料的研究进展[J]. 功能材料, 2019, 50(2):2070-2075.
WANG Xin, FANG Jianhua, LIU Ping, et al. Research progress of phase change materials[J]. Journal of Functional Materials, 2019, 50(2):2070-2075.
[12] CUNHA J P D. Thermal energy storage for low and medium temperature applications using phase change materials: a review[J]. Applied Energy, 2016(177):227-238.
[13] 陈柔羲. 基于相变材料热缓冲作用的高温防护服设计[D]. 苏州:苏州大学, 2013:15-16.
CHEN Rouxi. Design of the high temperature protective clothing based on the heat buffer action of PCM[D]. Suzhou: Soochow University, 2013:15-16.
[14] 陈若颖, 苏云, 王云仪. 相变材料在消防服中的应用研究进展[J]. 产业用纺织品, 2020, 38(4): 1-6.
CHEN Ruoying, SU Yun, WANG Yunyi. Research progress on the application of phase change materials in fire-fighting protective clothing[J]. Technical Textiles, 2020, 38(4):1-6.
[15] CHOU C, TOCHIHARA Y, KIM T. Physiological and subjective responses to cooling devices on firefighting protective clothing[J]. European Journal of Applied Physiology, 2008, 104(2): 369-374.
doi: 10.1007/s00421-007-0665-7
[16] 朱方龙. 服装的热防护功能[M]. 北京: 中国纺织出版社, 2015:181-186.
ZHU Fanglong. Thermal protection function of clothing[M]. Beijing: China Textile & Apparel Press, 2015:181-186.
[17] GAO C, KUKLANE K, HOLMÉR I. Cooling vests with phase change materials: the effects of melting temperature on heat strain alleviation in an extremely hot environment[J]. European Journal of Applied Physiology, 2011, 111(6): 1207-1216.
doi: 10.1007/s00421-010-1748-4
[18] 王云仪, 赵蒙蒙. 高温强辐射下相变降温背心的热调节作用客观测评[J]. 纺织学报, 2012, 33(5): 101-105.
WANG Yunyi, ZHAO Mengmeng. Objective evaluation on thermal adjusting effect of PCM cooling vest under high temperature and strong radiation[J]. Journal of Textile Research, 2012, 33(5):101-105.
[19] 乔文静. 纤维素固-固相变材料的制备及性能研究[D]. 北京: 北京服装学院, 2012:26-42.
QIAO Wenjing. Preparation and properties of CDA-based solid-solid phase change materials[D]. Beijing:Beijing Institute of Fashion Technology, 2012:26-42.
[20] 冯倩倩, 朱方龙, 杨凯. Outlast腈纶调温纺织品在消防服中的应用[J]. 中国个体防护装备, 2013(4): 39-44.
FENG Qianqian, ZHU Fanglong, YANG Kai. The application of Outlast acrylic temperature-controlling fabric in firefighters protective clothing[J]. China Personal Protective Equipment, 2013(4):39-44.
[21] 高腾. 阻燃相变微胶囊的制备及在织物中的应用研究[D]. 青岛: 青岛大学, 2006:12-51.
GAO Teng. The preparation of flame retardant microcapsule and phase change materials microcapsule and their application in fabric[D]. Qingdao: Qingdao University, 2006:12-51.
[22] 鄢瑛, 张会平. 配有制冷背心的隔绝式防护服的传热模型[J]. 华南理工大学学报(自然科学版), 2010, 38(8): 17-22.
YAN Ying, ZHANG Huiping. Heat transfer model of impermeable protective clothing with cooling vest[J]. Journal of South China University of Technology(Natural Science Edition), 2010, 38(8):17-22.
[23] 朱方龙, 李克兢. 一种消防服用阻燃相变隔热层织物的制备方法:201010233816.0[P]. 2010-07-22.
ZHU Fanglong, LI Kejing. Preparation method of flame-retardant phase-change thermal insulation layer fabric for fire-fighting clothing: 201010233816.0[P]. 2010-07-22.
[24] GENG X, LI W, WANG Y, et al. Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing[J]. Applied Energy, 2018(217): 281-294.
[25] 田苗, 李俊. 数值模拟在热防护服装性能测评中的应用[J]. 纺织学报, 2015, 36(1): 158-164.
TIAN Miao, LI Jun. Application of numerical simulation on performance evaluation of thermal protective clothing[J]. Journal of Textile Research, 2015, 36(1):158-164.
doi: 10.1177/004051756603600209
[26] 张慧. 基于气凝胶的高性能热防护纺织新材料的研究[D]. 天津:天津工业大学, 2017:5-6.
ZHANG Hui. Study on high performance thermal protective textile materials based on aerogel[D]. Tianjin:Tiangong University, 2017:5-6.
[27] 朱方龙, 张渭源. 基于人体皮肤热模型的热防护服评价方法研究[J]. 中国安全科学学报, 2007(11): 134-140.
ZHU Fanglong, ZHANG Huiyuan. Study on estimation of thermal protective clothing based on human skin heat transfer model[J]. China Safety Science Journal, 2007(11):134-140.
[28] 卢业虎, 李俊, 王云仪. 热防护服装热湿传递模型研究及发展趋势[J]. 纺织学报, 2012, 33(1): 151-156.
LU Yehu, LI Jun, WANG Yunyi. Research and developing trend of heat and moisture transfer model of thermal protective clothing[J]. Journal of Textile Research, 2012, 33(1):151-156.
[29] MELL W E, LAWSON J R. A heat transfer model for firefighters' protective clothing[J]. Fire Technology, 2000, 36(1):39-68.
doi: 10.1023/A:1015429820426
[30] ZHU F L, ZHANG W Y. Evaluation of thermal performance of flame-resistant fabrics considering thermal wave influence in human skin model[J]. Journal of Fire Sciences, 2006, 24(6): 465-485.
doi: 10.1177/0734904106062355
[31] SAWCYN C M J, TORVI D A. Improving heat transfer models of air gaps in bench top tests of thermal protective fabrics[J]. Textile Research Journal, 2009, 79(7): 632-644.
doi: 10.1177/0040517508093415
[32] ROSSI R M, BOLLI W P. Phase change materials for the improvement of heat protection[J]. Advanced Engineering Materials, 2005, 7(5):368-373.
doi: 10.1002/adem.200500064
[33] 叶宏, 张云鹏, 葛新石. 相变防护服的数值研究[J]. 中国科学技术大学学报, 2005, 35(4): 538-543.
YE Hong, ZHANG Yunpeng, GE Xinshi. Numerical investigation of phase change protective clothing[J]. Journal of University of Science and Technology of China, 2005, 35(4):538-543.
[34] MERCER G N, SIDHU H S. Mathematical modelling of the effect of fire exposure on a new type of protective clothing[J]. Australian & New Zealand Industrial & Applied Mathematics Journal, 2008(49):289-305.
[35] 李凤志, 吴成云, 李毅. 附加相变微胶囊多孔织物热湿传递模型研究[J]. 大连理工大学学报, 2008, 48(2): 162-167.
LI Fengzhi, WU Chengyun, LI Yi. A model of heat and moisture transfer in porous textiles with microencapsulated phase change materials[J]. Journal of Dalian University of Technology, 2008, 48(2):162-167.
[36] 朱方龙. 附加相变材料层的热防护服装传热数值模拟[J]. 应用基础与工程科学学报, 2011, 19(4): 635-643.
ZHU Fanglong. Numerical simulation of heat transfer for thermal protective clothing incorporating phase change material layer[J]. Journal of Basic Science and Engineering, 2011, 19(4):635-643.
[37] QIU Y F, JIANG N, WU W, et al. Heat transfer of heat sinking vest with phase-change material[J]. Chinese Journal of Aeronautics, 2011, 24(6): 720-725.
doi: 10.1016/S1000-9361(11)60084-8
[38] MCCARTHY L K, MARZO M D. The application of phase change material in fire fighter protective clo-thing[J]. Fire Technology, 2012, 48(4): 841-864.
doi: 10.1007/s10694-011-0248-3
[39] BÜHLER M, POPA A M, SCHERER L J, et al. Heat protection by different phase change materials[J]. Applied Thermal Engineering, 2013, 54(2): 359-364.
doi: 10.1016/j.applthermaleng.2013.02.025
[40] HU Y, HUANG D, QI Z, et al. Modeling thermal insulation of firefighting protective clothing embedded with phase change material[J]. Heat and Mass Transfer, 2013, 49(4): 567-573.
doi: 10.1007/s00231-012-1103-x
[41] HAMDAN H, GHADDAR N, OUAHRANI D, et al. PCM cooling vest for improving thermal comfort in hot environment[J]. International Journal of Thermal Sciences, 2016(102):154-167.
[42] PHELPS H L, WATT S D, SIDHU H S, et al. Using phase change materials and air gaps in designing fire fighting suits: a mathematical investigation[J]. Fire Technology, 2019, 55(1):363-381.
doi: 10.1007/s10694-018-0794-z
[43] CHITRPHIROMSRI P, KUZNETSOV A V. Modeling heat and moisture transport in firefighter protective clothing during flash fire exposure[J]. Heat and Mass Transfer, 2005, 41(3): 206-215.
[44] SU Y, LI J, SONG G W. The effect of moisture content within multilayer protective clothing on protection from radiation and steam[J]. International Journal of Occupational Safety & Ergonomics, 2018, 24(2):190-199.
[45] SHIN Y, YOO D I, SON K. Development of thermoregulating textile materials with microencapsulated phase change materials (PCM): IV: performance properties and hand of fabrics treated with PCM microcapsules[J]. Journal of Applied Polymer Science, 2010, 97(3): 910-915.
doi: 10.1002/app.21846
[46] MONDAL S. Phase change materials for smart textiles: an overview[J]. Applied Thermal Engineering, 2008, 28(11/12): 1536-1550.
doi: 10.1016/j.applthermaleng.2007.08.009
[47] FONSECA A, NEVES S F, CAMPOS J B L M. Thermal performance of a PCM firefighting suit considering transient periods of fire exposure, post: fire exposure and resting phases-science direct[J]. Applied Thermal Engineering, 2020(182):115769.
[48] 赵蒙蒙. 可调温织物与服装吸热效应评价研究[D]. 上海:东华大学, 2013:33-63.
ZHAO Mengmeng. Study on the heat absorption effect of fabrics and clothing technologies with thermal regulatory features[D]. Shanghai:Donghua University, 2013:33-63.
[49] ZHANG H, SONG G, SU H, et al. An exploration of enhancing thermal protective clothing performance by incorporating aerogel and phase change materials[J]. Fire & Materials, 2017, 41(8): 953-963.
[50] REINERTSEN R E, FAREVIK H, HOLBO K, et al. Optimizing the performance of phase-change materials in personal protective clothing systems[J]. International Journal of Occupational Safety and Ergonomics, 2008, 14(1):43-53.
doi: 10.1080/10803548.2008.11076746
[51] YOO H, LIM J, KIM E. Effects of the number and position of phase-change material-treated fabrics on the thermo-regulating properties of phase-change material garments[J]. Textile Research Journal, 2012, 83(7): 671-682.
doi: 10.1177/0040517512461700
[52] 朱方龙, 樊建彬, 冯倩倩, 等. 相变材料在消防服中的应用及可行性分析[J]. 纺织学报, 2014, 35(8): 124-132.
ZHU Fanglong, FAN Jianbin, FENG Qianqian, et al. Application and feasibility analysis of phase change materials for fire-fighting suit[J]. Journal of Textile Research, 2014, 35(8):124-132.
doi: 10.1177/004051756503500205
[53] 李俊, 王云仪, 张向辉, 等. 消防服多层织物系统的组合构成与性能[J]. 东华大学学报(自然科学版), 2008, 34(4): 410-415.
LI Jun, WANG Yunyi, ZHANG Xianghui, et al. Properties and combination of multi-layered fabrics of firefighter protective clothing[J]. Journal of Donghua University(Natural Science), 2008, 34(4):410-415.
[54] PAUSE B. Development of heat and cold insulating membrane structures with phase change material[J]. Journal of Industrial Textiles, 1995, 25(1): 59-68.
[55] PHELPS H, SIDHU H. A mathematical model for heat transfer in fire fighting suits containing phase change materials[J]. Fire Safety Journal, 2015(74):43-47.
[56] 杨棹航. 附加相变材料的消防服热性能研究[D]. 天津:天津工业大学, 2016:15-48.
YANG Zhuohang. Study on thermal performance of fire suit with phase change material[D]. Tianjin:Tiangong University, 2016:15-48.
[57] FONSECA A, MAYOR T S, CAMPOS J B L M. Guidelines for the specification of a PCM layer in firefighting protective clothing ensembles[J]. Applied Thermal Engineering, 2018(133):81-96.
[58] 王棋生. 相变材料分布对相变调温热防护效果的影响分析[D]. 苏州:苏州大学, 2016:11-32.
WANG Qisheng. Analysis of protective effects of PCM distribution on PCM thermal controlling perfor-mance[D]. Suzhou: Soochow University, 2016:11-32.
[59] GAO C, KUKLANE K, HOLMÉR I. Cooling effect of a PCM vest on a thermal manikin and on humans exposed to heat[J]. Environmental Ergonomics, 2007, 12(4):146-149.
[1] ZHANG Wenhuan, LI Jun. Research progress in heat transfer mechanism of firefighter protective clothing under low-level radiant heat exposures [J]. Journal of Textile Research, 2021, 42(10): 190-198.
[2] JIANG Lulu, DENG Meng, WANG Yunyi, LI Jun. Research progress on application of aerogel materials in firefighting clothing [J]. Journal of Textile Research, 2021, 42(09): 187-194.
[3] ZHENG Qing, WANG Zhaojie, WANG Hongbo, WANG Min, KE Ying. Development and performance evaluation of thermal protective clothing for moped cycling [J]. Journal of Textile Research, 2021, 42(07): 158-163.
[4] ZHAO Jingde, DING Yiran, ZHANG Chunhong. Heat transfer modeling and experimental research of ventilation clothing in high-temperature outdoor environment [J]. Journal of Textile Research, 2021, 42(06): 153-159.
[5] CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174.
[6] WANG Qi, TIAN Miao, SU Yun, LI Jun, YU Mengfan, XU Xiao. Effect of open/closed air layer on thermal protective performance of flame-resistant fabrics [J]. Journal of Textile Research, 2020, 41(12): 54-58.
[7] MENG Jing, GAO Shan, LU Yehu. Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(11): 116-121.
[8] ZHAI Li'na, LI Jun, YANG Yunchu. Development and current state of thermal sensors used for testing thermal protective clothing [J]. Journal of Textile Research, 2020, 41(10): 188-196.
[9] LIU Guojin, SHI Feng, CHEN Xinxiang, ZHANG Guoqing, ZHOU Lan. Preparation of polyurethane/phase change wax functional finishing agents for heat storage and temperature regulation and their applications on cotton fabrics [J]. Journal of Textile Research, 2020, 41(07): 129-134.
[10] HE Jiazhen, XUE Xiaoyu, WANG Min, LI Jun. Predicting thermal protective performance of clothing based on maximum attenuation factor model [J]. Journal of Textile Research, 2020, 41(06): 112-117.
[11] GAO Shan, LU Yehu, ZHANG Desuo, WU Lei, WANG Laili. Thermal protective performance of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(04): 117-122.
[12] ZHENG Qing, WANG Hongfu, KE Ying, LI Shuang. Design and evaluation of cooling clothing by phase change materials for miners [J]. Journal of Textile Research, 2020, 41(03): 124-129.
[13] DING Ning, LIN Jie. Free convection calculation method for performance prediction of thermal protective clothing in an unsteady thermal state [J]. Journal of Textile Research, 2020, 41(01): 139-144.
[14] QIU Hao, SU Yun, WANG Yunyi. Influence of steam exposure condition on thermal protective performance of fabrics [J]. Journal of Textile Research, 2020, 41(01): 118-123.
[15] HU Beibei, DU Feifei, LI Xiaohui. Hole structure optimization and evaluation of thermal barrier for firefighter protective clothing [J]. Journal of Textile Research, 2019, 40(11): 140-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!