Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (03): 201-209.doi: 10.13475/j.fzxb.20201104309
• Comprehensive Review • Previous Articles Next Articles
JIN Xu1,2,3, LIU Fang1,2,3, DU Xuan4, HUA Chao4, GONG Xuzhong4, ZHANG Xiuqin1,2,3, WANG Bin1,2,3()
CLC Number:
[1] |
REDDY A V B, YUSOP Z, JAAFAR J, et al. Recent progress on Fe-based nanoparticles synjournal, properties, characterization and environmental applications[J]. Journal of Environmental Chemical Engineering, 2016,4(3):3537-3553.
doi: 10.1016/j.jece.2016.07.035 |
[2] |
LEFEVRE E, BOSSA N, WIESNER M R, et al. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): behavior, transport and impacts on microbial communities[J]. Science of the Total Environment, 2016,565:889-901.
doi: 10.1016/j.scitotenv.2016.02.003 |
[3] | LITTER M I, QUICI N, MEICHTRY M. Iron nanomaterials for water and soil treatment[M]. 2nd ed. Boca Raton: Jenny Stanford Publishing, 2018:257-259. |
[4] | CRANE R A, SCOTT T B. Nanoscale zero-valent iron: future prospects for an emerging water treatment technology[J]. Journal of Hazardous Materials, 2012,211:112-125. |
[5] |
MU Y, JIA F, AI Z, et al. Iron oxide shell mediated environmental remediation properties of nano zero-valent iron[J]. Environmental Science: Nano, 2017,4(1):27-45.
doi: 10.1039/C6EN00398B |
[6] |
YIRSAW B D, MEGHARAJ M, CHEN Z, et al. Environmental application and ecological significance of nano-zero valent iron[J]. Journal of Environmental Sciences, 2016,44:88-98.
doi: 10.1016/j.jes.2015.07.016 |
[7] |
RAMAN C D, KANMANI S. Textile dye degradation using nano zero valent iron: a review[J]. Journal of Environmental Management, 2016,177:341-355.
doi: 10.1016/j.jenvman.2016.04.034 |
[8] |
STEFANIUK M, OLESZCZUK P, OK Y S. Review on nano zerovalent iron (nZVI) from synjournal to environmental applications[J]. Chemical Engineering Journal, 2016,287:618-632.
doi: 10.1016/j.cej.2015.11.046 |
[9] |
WANG C, BAER D R, AMONETTE J E, et al. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles[J]. Journal of the American Chemical Society, 2009,131(25):8824-8832.
doi: 10.1021/ja900353f |
[10] | WANG C B, ZHANG W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environmental Science & Technology, 1997,31(7):9602-9607. |
[11] | 王舒畅, 宋亚丹, 孙远奎. 碳基材料修饰零价铁去除污染物的效能与机理[J]. 化学进展, 2019,31(Z1):422-432. |
WANG Shuchang, SONG Yadan, SUN Yuankui. Performance and mechanism of contaminants removal by carbon materialsmodified zerovalent iron[J]. Progress in Chemistry, 2019,31(Z1):422-432. | |
[12] |
HWANG Y H, KIM D G, SHIN H S. Mechanism study of nitrate reduction by nano zero valent iron[J]. Journal of Hazardous Materials, 2011,185(2/3):1513-1521.
doi: 10.1016/j.jhazmat.2010.10.078 |
[13] |
FU F, DIONYSIOU D D, LIU H. The use of zero-valent iron for groundwater remediation and wastewater treatment a review[J]. Journal of Hazardous Materials, 2014,267:194-205.
doi: 10.1016/j.jhazmat.2013.12.062 |
[14] | 潘柯辛, 唐仁士, 蔡晓阳, 等. 零价纳米铁的制备与应用[J]. 绿色科技, 2019(8):159-161, 218. |
PAN Kexin, TANG Renshi, CAI Xiaoyang, et al. Preparation and application of nanoscale zero-valent iron[J]. Journal of Green Science and Technology, 2019(8):159-161, 218. | |
[15] |
ZHAO X, LIU W, CAI Z, et al. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation[J]. Water Research, 2016,100:245-266.
doi: 10.1016/j.watres.2016.05.019 |
[16] | 谢青青, 姚楠. 纳米零价铁的制备及应用研究进展[J]. 化工进展, 2017,36(6):2208-2214. |
XIE Qingqing, YAO Nan. Progress of preparation and application of nanoscale zero-valent iron[J]. Progress in Chemistry, 2017,36(6):2208-2214. | |
[17] | 张守秋, 岑洁, 吕德义, 等. 纳米零价铁去除水中重金属铅、铬离子的研究[J]. 高校化学工程学报, 2019,33(3):524-532. |
ZHANG Shouqiu, CEN Jie, LÜ Deyi, et al. Removal of lead and chromium ions in water by nanoscale zero-valent iron[J]. Journal of Chemical Engineering of Chinese University, 2019,33(3):524-532. | |
[18] |
GUAN X, SUN Y, QIN H, et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014)[J]. Water Research, 2015,75:224-248.
doi: 10.1016/j.watres.2015.02.034 |
[19] | 齐盛泽. 纳米零价铁及其在环境修复中的应用[J]. 中国高新科技, 2019 (1):110-112. |
QI Shengze. Nano zero valent iron and its application in environmental remediation[J]. China High-Tech, 2019(1):110-112. | |
[20] | 王世林, 滕玮. 多孔材料负载型纳米零价铁的制备及其在环境中的应用进展[J]. 山东化工, 2019,48(3):24-26. |
WANG Shilin, TENG Wei. Advance in preparation and application of nZVI loaded on porous materials in environmental field[J]. Shandong Chemical Industry, 2019,48(3):24-26. | |
[21] | 张茜茜, 夏雪芬, 周文, 等. 纳米零价铁的制备及其在环境中的应用进展[J]. 环境科学与技术, 2016,39(1):60-65. |
ZHANG Xixi, XIA Xuefen, ZHOU Wen, et al. Advance in preparation and application of nanoscale zero-valent iron in environment field[J]. Environmental Science & Technology, 2016,39(1):60-65. | |
[22] |
MUKHERJEE R, KUMAR R, SINHA A, et al. A review on synjournal, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation[J]. Critical Reviews in Environmental Science and Technology, 2016,46(5):443-466.
doi: 10.1080/10643389.2015.1103832 |
[23] |
LI S, YAN W, ZHANG W. Solvent-free production of nanoscale zero-valent iron (nZVI) with precision mill-ing[J]. Green Chemistry, 2009,11(10):1618-1626.
doi: 10.1039/b913056j |
[24] |
LIU A, ZHANG W. Fine structural features of nanoscale zero-valent iron characterized by spherical aberration corrected scanning transmission electron microscopy (Cs-STEM)[J]. Analyst, 2014,139(18):4512-4518.
doi: 10.1039/C4AN00679H |
[25] |
BECKER M F, BROCK J R, CAI H, et al. Metal nanoparticles generated by laser ablation[J]. Nanostructured Materials, 1998,10(5):853-863.
doi: 10.1016/S0965-9773(98)00121-4 |
[26] |
RIBAS D, PEŠKOVÁ K, JUBANY I, et al. High reactive nano zero-valent iron produced via wet milling through abrasion by alumina[J]. Chemical Engineering Journal, 2019,366:235-245.
doi: 10.1016/j.cej.2019.02.090 |
[27] | 任静怡. 浅谈绿色合成零价铁纳米粒子环境污染修复中的应用[J]. 中国设备工程, 2019 (1):158-160. |
REN Jingyi. Application of green synjournal of zero valent iron nanoparticles in environmental pollution remedia-tion[J]. China Plant Engineering, 2019(1):158-160. | |
[28] |
陈海军, 黄舒怡, 张志宾, 等. 功能性纳米零价铁的构筑及其对环境放射性核素铀的富集应用研究进展[J]. 化学学报, 2017,75(6):560-574.
doi: 10.6023/A17010039 |
CHEN Haijun, HUANG Shuyi, ZHANG Zhibin, et al. Synjournal of functional nanoscale zero-valent iron composites for the application of radioactive uranium enrichment from environment: a review[J]. Acta Chimica Sinica, 2017,75(6):560-574.
doi: 10.6023/A17010039 |
|
[29] |
JIA T, WANG Z, SHAN H, et al. Effect of nanoscale zero-valent iron on sludge anaerobic digestion[J]. Resources, Conservation and Recycling, 2017,127:190-195.
doi: 10.1016/j.resconrec.2017.09.007 |
[30] |
EBRAHIMINEZHAD A, ZARE-HOSEINABADI A, SARMAH A K, et al. Plant-mediated synjournal and applications of iron nanoparticles[J]. Molecular Biotechnology, 2018,60(2):154-168.
doi: 10.1007/s12033-017-0053-4 |
[31] | 刘清, 邓真宁, 滑熠龙, 等. 纳米铁的绿色合成及其在环境中的应用研究进展[J]. 化工进展, 2020,39(5):1950-1963. |
LIU Qing, DENG Zhenning, HUA Yilong, et al. Green synjournal of Fe nanoparticles and their environmental applications[J]. Progress in Chemistry, 2020,39(5):1950-1963. | |
[32] |
HUANG L, WENG X, CHEN Z, et al. Green synjournal of iron nanoparticles by various tea extracts: comparative study of the reactivity[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014,130:295-301.
doi: 10.1016/j.saa.2014.04.037 |
[33] | 雍晓静, 关翀, 张昊, 等. 纳米零价铁的制备技术及其应用研究进展[J]. 环境工程, 2020,38(9):14-22. |
YONG Xiaojing, GUAN Chong, ZHANG Hao, et al. Research progress in preparation technology and application of nano-zero-valent iron[J]. Environmental Engineering, 2020,38(9):14-22. | |
[34] | 吴鸿伟, 冯启言, 杨虹, 等. 零价纳米铁的制备及对头孢类抗生素去除研究进展[J]. 化学研究与应用, 2018,30(5):657-665. |
WU Hongwei, FENG Qiyan, YANG Hong, et al. Advance in fabrication of nano zero-valent iron for cephalosporin antibiotics removal[J]. Chemical Research and Application, 2018,30(5):657-665. | |
[35] |
SHI L, ZHANG X, CHEN Z. Removal of chro-mium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron[J]. Water Research, 2011,45(2):886-892.
doi: 10.1016/j.watres.2010.09.025 |
[36] | 张建昆, 冯启言, 张林军, 等. 活性炭负载纳米零价铁去除对硝基酚的实验研究[J]. 应用化工, 2020,49(1):90-93. |
ZHANG Jiankun, FENG Qiyan, ZHANG Linjun, et al. Study on removal of p-nitrophenol using nanoscale zero-valent iron supported on activated carbon[J]. Applied Chemical Industry, 2020,49(1):90-93. | |
[37] | 徐文斐, 任文海, 张秀霞, 等. 生物炭负载零价铁复合材料对土壤中石油污染物的去除作用[J]. 石油学报(石油加工), 2020,36(5):1069-1077. |
XU Wenfei, REN Wenhai, ZHANG Xiuxia, et al. Removal function of biochar supported zero-valent iron composite materials for petroleum pollutantsin soil[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020,36(5):1069-1077. | |
[38] |
TOMAŠEVI D D, KOZMA G, KERKEZ D V, et al. Toxic metal immobilization in contaminated sediment using bentonite-and kaolinite-supported nano zero-valent iron[J]. Journal of Nanoparticle Research, 2014,16(8):2548.
doi: 10.1007/s11051-014-2548-2 |
[39] |
BAO T, DAMTIE M M, HOSSEINZADEH A, et al. Bentonite-supported nano zero-valent iron composite as a green catalyst for bisphenol a degradation: preparation, performance, and mechanism of action[J]. Journal of Environmental Management, 2020,260:110105.
doi: 10.1016/j.jenvman.2020.110105 |
[40] | 刘红, 程顺, 李春侠, 等. 凹凸棒土负载硫化纳米零价铁的制备及其去除水中As(Ⅲ)性能研究[J]. 武汉科技大学学报, 2020,43(1):30-36. |
LIU Hong, CHENG Shun, LI Chunxia, et al. Preparation of attapulgite-loaded sulfide-modified nanoscale zero-valentiron and its adsorption of As(Ⅲ) from aqueous solution[J]. Journal of Wuhan University of Science and Technology, 2020,43(1):30-36. | |
[41] |
DONG L, LIN L, LI Q, et al. Enhanced nitrate-nitrogen removal by modified attapulgite-supported nanoscale zero-valent iron treating simulated ground-water[J]. Journal of Environmental Management, 2018,213:151-158.
doi: 10.1016/j.jenvman.2018.02.073 |
[42] |
DIAO Z H, XU X R, JIANG D, et al. Bentonite-supported nanoscale zero-valent iron/persulfate system for the simultaneous removal of Cr (VI) and phenol from aqueous solutions[J]. Chemical Engineering Journal, 2016,302:213-222.
doi: 10.1016/j.cej.2016.05.062 |
[43] | 王璐瑶. 静电纺丝技术固载纳米零价铁研究进展[J]. 科技创新与应用, 2019(14):10-11. |
WANG Luyao. Research progress of nano zero valent iron fixed by electrospinning[J]. Technology Innovation and Application, 2019(14):10-11. | |
[44] |
XIAO S, SHEN M, GUO R, et al. Immobilization of zerovalent iron nanoparticles into electrospun polymer nanofibers: synjournal, characterization, and potential environmental applications[J]. The Journal of Physical Chemistry C, 2009,113(42):18062-18068.
doi: 10.1021/jp905542g |
[45] |
XIAO S, SHEN M, GUO R, et al. Fabrication of multiwalled carbon nanotube-reinforced electrospun polymer nanofibers containing zero-valent iron nanoparticles for environmental applications[J]. Journal of Materials Chemistry, 2010,20(27):5700-5708.
doi: 10.1039/c0jm00368a |
[46] |
XIAO S, MA H, SHEN M, et al. Excellent copper (Ⅱ) removal using zero-valent iron nanoparticle-immobilized hybrid electrospun polymer nanofibrous mats[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011,381(1-3):48-54.
doi: 10.1016/j.colsurfa.2011.03.005 |
[47] |
REN J, TIJING L D, SHON H K. “Robbing behavior” and re-immobilization of nanoscale zero-valent iron (nZVI) onto electrospun polymeric nanofiber mats for trichloroethylene (TCE) remediation[J]. Separation and Purification Technology, 2017,189:375-381.
doi: 10.1016/j.seppur.2017.08.011 |
[48] |
REN J, YAO M, WOO Y C, et al. Recyclable nanoscale zerovalent iron (nZVI)-immobilized electrospun nanofiber composites with improved mechanical strength for groundwater remediation[J]. Composites Part B: Engineering, 2019,171:339-346.
doi: 10.1016/j.compositesb.2019.04.038 |
[49] |
CHAUHAN D, DWIVEDI J, SANKARARAMAK-RISHNAN N. Novel chitosan/PVA/zero valent iron biopolymeric nanofibers with enhanced arsenic removal applications[J]. Environmental Science and Pollution Research, 2014,21(15):9430-9442.
doi: 10.1007/s11356-014-2864-1 |
[50] |
HORZUM N, DEMIR M M, NAIRAT M, et al. Chitosan fiber-supported zero-valent iron nanoparticles as a novel sorbent for sequestration of inorganic arsenic[J]. RSC Advances, 2013,3(21):7828-7837.
doi: 10.1039/c3ra23454a |
[51] | MUCHA N R. Electrospun carbon nanofibers with surface attached zero valent iron nanoparticles for heavy metal remediation in ground and waste water[D]. Greensboro: North Carolina Agricultural and Technical State University, 2016: 50-52. |
[52] |
MUCHA N R, RAVELLA R, REDDY M R, et al. Electrospun carbon nanofiber supported zero valent iron nanoparticles (nZVI@ECNFs) for Cr(VI) remediation in ground and waste water[J]. MRS Advances, 2016,1(53):3593-3599.
doi: 10.1557/adv.2016.491 |
[53] |
REN J, WOO Y C, YAO M, et al. Nanoscale zero-valent iron (nZVI) immobilization onto graphene oxide (GO)-incorporated electrospun polyvinylidene fluoride (PVDF) nanofiber membrane for groundwater remediation via gravity-driven membrane filtration[J]. Science of the Total Environment, 2019,688:787-796.
doi: 10.1016/j.scitotenv.2019.05.393 |
[54] | 武汉理工大学. 一种具有同轴结构含零价铁纳米粒子的复合纳米纤维膜的制备方法:201910105663.2[P]. 2019-06-14. |
Wuhan University of Technology. A preparation method of composite nanofiber membrane with coaxial structure containing zero valent iron nanoparticles:201910105663.2[P]. 2019-06-14. | |
[55] | 肖仕丽. 静电纺零价纳米铁/聚合物材料的制备、表征及其环境修复应用[D]. 上海:东华大学, 2010: 31-33. |
XIAO Shili. Electrospun zero-valent iron nanoparticles/polymer materials: synthesis, characterization and environmental application[D]. Shanghai: Donghua University, 2010: 31-33. | |
[56] |
WANG X, WANG T, MA J, et al. Synjournal and characterization of a new hydrophilic boehmite-PVB/ PVDF blended membrane supported nano zero-valent iron for removal of Cr(VI)[J]. Separation and Purification Technology, 2018,205:74-83.
doi: 10.1016/j.seppur.2018.05.010 |
[57] |
BHAUMIK M, MCCRINDLE R I, MAITY A. Enhanced adsorptive degradation of congo red in aqueous solutions using polyaniline/Fe0 composite nanofibers[J]. Chemical Engineering Journal, 2015,260:716-729.
doi: 10.1016/j.cej.2014.09.014 |
[1] | ZHANG Yu, LIU Laijun, LI Chaojing, JIN Qiaoqiao, XIE Qianyang, LI Peilun, WANG Fujun, WANG Lu. Preparation of exosome-functionalized shish-kebab fibrous membrane and its osteogenic differentiation ability [J]. Journal of Textile Research, 2022, 43(03): 24-30. |
[2] | ZHANG Aiqin, HAO Jiacheng, WANG Zhi, WANG Yongchao, LIU Shuqiang, DONG Hailiang, JIA Husheng, XU Bingshe. Preparation and fluorescence enhancement mechanism of bonded polymer fluorescence fibers [J]. Journal of Textile Research, 2022, 43(03): 50-57. |
[3] | TAO Xuchen, LI Lin, XU Zhenzhen. Preparation and selective adsorption of calixarene/reduced graphene oxide fibers [J]. Journal of Textile Research, 2022, 43(03): 64-70. |
[4] | ZHOU Xiaoya, MA Dinghai, HU Chengye, HONG Jianhan, LIU Yongkun, HAN Xiao, YAN Tao. Continuous preparation and application of polyester/polyamide 6 nanofiber coated yarns [J]. Journal of Textile Research, 2022, 43(02): 110-115. |
[5] | XU Zhaobao, HE Cui, ZHAO Jinchao, HUANG Leping. Preparation of coaxially electrospun multi-level fiber membrane and its phase change temperature-regulating performance [J]. Journal of Textile Research, 2022, 43(02): 69-73. |
[6] | XU Shilin, YANG Shiyu, ZHANG Yaru, HU Liu, HU Yi. Preparation and properties of thermoplastic polyurethane/tefluororone amorphous fluoropolymer superhydrophobic nanofiber membranes [J]. Journal of Textile Research, 2021, 42(12): 42-42. |
[7] | JIA Lin, WANG Xixian, LI Huanyu, ZHANG Haixia, QIN Xiaohong. Preparation and properties of polyacrylonitrile/BaTiO3 composite nanofibrous filter membrane [J]. Journal of Textile Research, 2021, 42(12): 34-41. |
[8] | WANG Shudong, DONG Qing, WANG Ke, MA Qian. Preparation and properties of polylactic acid nanofibrous membrane reinforced by reduced graphene oxide [J]. Journal of Textile Research, 2021, 42(12): 28-33. |
[9] | CHEN Xian, LI Mengmeng, ZHAO Xin, DONG Jie, TENG Cuiqing. Preparation and microstructure control of aerogel fibers based on aramid nanofibers [J]. Journal of Textile Research, 2021, 42(11): 17-23. |
[10] | ZHOU Yuanyuan, ZHENG Yuming, WU Xiaoqiong, SHAO Zaidong. Research progress of performance enhancement methods for electrospun nanofiber-based photocatalyst [J]. Journal of Textile Research, 2021, 42(11): 179-186. |
[11] | LIU Qiangfei, WU Shaohua, YANG Jizhen, ZHOU Rong, DONG Xianglin, SONG Chuanbo, SHEN Zhaoxu. Preparation and properties of polytetrafluoroethylene/phenylene sulfide needled felt modified by aramid nanofiber [J]. Journal of Textile Research, 2021, 42(10): 47-52. |
[12] | WU Qinxin, HOU Chengyi, LI Yaogang, ZHANG Qinghong, QIN Zongyi, WANG Hongzhi. Radiative cooling nanofiber medical fabrics and sensor system integration [J]. Journal of Textile Research, 2021, 42(09): 24-30. |
[13] | QUAN Zhenzhen, WANG Yihan, ZU Yao, QIN Xiaohong. Jet formation mechanism and film forming characteristics of multi-curved surface sprayer for electrospinning [J]. Journal of Textile Research, 2021, 42(09): 39-45. |
[14] | CAO Yuanming, ZHENG Mi, LI Yifei, ZHAI Wangyi, LI Liyan, CHANG Zhuningzi, ZHENG Min. Preparation of MoS2/polyurethane composite fibrous membranes and their photothermal conversion properties [J]. Journal of Textile Research, 2021, 42(09): 46-51. |
[15] | ZHANG Yaru, HU Yi, CHENG Zhongling, XU Shilin. Preparation and energy storage properties of polyacrylonitrile-based Si/C/carbon nanotube composite carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(08): 49-56. |
|