Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (04): 28-32.doi: 10.13475/j.fzxb.20201105706

• Fiber Materials • Previous Articles     Next Articles

Cashmere and wool classification based on sparse dictionary learning

SUN Chunhong1, DING Guangtai1,2(), FANG Kun1   

  1. 1. School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
    2. Materials Genome Institute, Shanghai University, Shanghai 200444, China
  • Received:2020-11-30 Revised:2022-01-17 Online:2022-04-15 Published:2022-04-20
  • Contact: DING Guangtai E-mail:gtding@shu.edu.cn

Abstract:

In order to identify cashmere and wool fibers accurately, this paper proposes a classification method based on sparse dictionary learning. Firstly, the fiber image is preprocessed to achieve data enhancement to achieve a fiber image feature matrix. Secondly, dictionary learning is performed on the feature matrix to obtain a complete dictionary and sparse coding. Finally, based on sparse coding and dictionary, the classification and identification of cashmere and wool is implemented. This method uses optical microscope images and scanning electron microscope images as data sets. Experiment results show that compared with support vector machine classifiers and sparse representation-based classifier algorithms, the classification accuracy of this method can be improved by 5%-10%, and the classification accuracy can reach up to 91%. It can be used for subsequent actual classification and identification of cashmere and wool fibers.

Key words: sparse representation, dictionary learning, image recognition, machine learning, cashmere, wool, fiber identification

CLC Number: 

  • TP391.4

Fig.1

Original images of cashmere and wool. (a) Cashmere optical microscope image(×500); (b) Wool optical microscope image(×500); (c) Cashmere SEM image(×1 000); (d) Wool SEM image(×1 000)"

Fig.2

Image samples after preprocessing. (a) Wool SEM image after denoising; (b) Wool optical microscope image after denoising; (c) Cashmere augmentation image 1; (d) Cashmere augmentation image 2"

Fig.3

Example diagram of LBP feature extraction"

Tab.1

Optical microscope data set"

数据集编号 数据集名称 图像种类 数量/张
1 训练集 山羊绒 4 607
2 训练集 绵羊毛 3 950
3 测试集 山羊绒 1 618
4 测试集 绵羊毛 1 626

Tab.2

Scanning electron microscope data set"

数据集编号 数据集名称 图像种类 数量/张
1 训练集 山羊绒 3 468
2 训练集 绵羊毛 4 724
3 测试集 山羊绒 1 665
4 测试集 绵羊毛 1 756

Fig.4

Steps of cashmere and wool classification based on sparse dictionary learning"

Tab.3

Classification results of SDL method under different number of dictionary items"

实验
编号
字典
个数k
准确率
A/%
召回率R/
%
查全率P/
%
F1-score/
%
1 2 000 55.92 90.17 53.44 67.11
2 3 000 69.57 91.29 63.58 74.96
4 4 000 82.86 92.71 77.40 84.36
5 5 000 87.36 83.99 90.00 86.29

Tab.4

Comparison of classification results"

方法
编号
方法
名称
准确率
A/%
召回率
R/%
精准率
P/%
F1-score/
%
1 LBP+SVM 48.12 14.83 44.04 22.19
2 LBP+K-SVD+SVM 49.88 99.89 49.88 66.56
3 SRC 53.32 94.19 52.52 67.44
4 SDL 61.24 80.35 58.99 68.03
[1] 马海, 吴桂芳, 李志东, 等. 山羊绒纤维鉴别技术的现状与发展趋势[J]. 毛纺科技, 2017, 45(3):5-9.
MA Hai, WU Guifang, LI Zhidong, et al. Current situation and development trend of cashmere identification technology[J]. Wool Textile Journal, 2017, 45(3):5-9.
[2] 徐英, 谷雨, 彭冬亮. 基于稀疏表示和多特征融合的SAR图像识别[J]. 指挥信息系统与技术, 2020, 11(3): 29-35.
XU Ying, GU Yu, PENG Dongliang. SAR image recognition based on sparse representation and multi-feature fusion[J]. Command Information System and Technology, 2020, 11(3):29-35.
[3] 孙利雷, 秦进. 稀疏字典学习方法综述[J]. 贵州大学学报(自然科学版), 2018, 35(5):81-86.
SUN Lilei, QIN Jin. Review on sparse dictionary learning method[J]. Journal of Guizhou Univer-sity (Natural Sciences), 2018, 35(5):81-86.
[4] 朱洋洋, 贺兴时. 基于SIFT稀疏表示的人脸识别算法[J]. 西安工程大学学报, 2020, 34(6):106-112.
ZHU Yangyang, HE Xingshi. Face recognition algorithm based on SIFT and sparse representa-tion[J]. Journal of Xi'an Polytechnic University, 2020, 34(6):106-112.
[5] MICHAL Aharon, MICHAEL Elad, ALFRED Bruckstein. K-SVD: an algorithm for designing over-complete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.
doi: 10.1109/TSP.2006.881199
[6] WRIGHT John, YANG Allen Y, GANESH Arvind, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009(2):210-227.
[7] VU Tiep huu, MONGA Vishal. Fast low-rank shared dictionary learning for image classification[J]. IEEE Transactions on Image Processing, 2017. DOI: 10.1109/TIP.2017.2729885.
doi: 10.1109/TIP.2017.2729885
[8] MAIRAL Julien, BACH Francis, PONCE J, et al. Supervised dictionary learning[J]. HAL-INRIA, 2008. DOI: ieeecomputersociety.org/10.1109/FG.2013. 6553745.
doi: ieeecomputersociety.org/10.1109/FG.2013. 6553745
[9] JIANG Zhuolin, LIN Zhe, DAVIS Larry S. Learning a discriminative dictionary for sparse coding via label consistent K-SVD[C]// IEEE Conference on Computer Vision & Pattern Recognition. Washington: IEEE, 2011: 1697-1704.
[10] HE Kaiming, SUN Jian, TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 33(12):2341-2353.
[11] 姚立平, 潘中良. 基于改进的HOG和LBP算法的人脸识别方法研究[J]. 光电子技术, 2020, 40(2):114-118,124.
YAO Liping, PAN Zhongliang. Research on face recognition method based on improved HOG and LBP algorithms[J]. Optoelectronic Technology, 2020, 40(2): 114-118,124.
[12] 杨晓玲, 李志清, 刘雨桐. 基于多标签判别字典学习的图像自动标注[J]. 计算机应用, 2018, 38(5): 1294-1298,1303.
YANG Xiaoling, LI Zhiqing, LIU Yutong. Automatic image annotation based on multi-label discriminative dictionary learning[J]. Journal of Computer Applications, 2018, 38(5):1294-1298,1303.
[1] HUANG Hongbo, HAN Zongbao, GUO Heng, YAO Jinbo, JIANG Huiyu, XIA Zhigang, WANG Yunli. Influence of thermal and moist treatments on shape retention performance of anti-creasing wool fabrics [J]. Journal of Textile Research, 2021, 42(12): 119-124.
[2] LIU Guowei, PAN Ruru, GAO Weidong, ZHOU Jian. Fabric defects segmentation using total variation [J]. Journal of Textile Research, 2021, 42(11): 64-70.
[3] ZHOU Huiling, ZHU Lisha, WU Xiongying, DING Xuemei. Effect of electro-spraying treatment on anti-pilling performance of wool fabrics [J]. Journal of Textile Research, 2021, 42(10): 120-125.
[4] PAN Jiajun, XIA Zhaopeng, ZHANG Haibao, LU Yang, ZHAO Jilin, WANG Xuenong, WANG Liang, LIU Yong. Optimization and mechanism of hydrogen peroxide/ammonium persulfate bleaching for yak wool [J]. Journal of Textile Research, 2021, 42(04): 101-106.
[5] YANG Wenjing, WU Hailiang, MA Jianhua, YAO Yijun, SHEN Yanqin. Preparation and properties of succinic anhydride acylated gelatin sizing agent for wool yarn sizing [J]. Journal of Textile Research, 2021, 42(04): 93-100.
[6] YUAN Jiugang, JI Ji, XUE Qi, JIANG Zhe, FAN Xuerong, GAO Weidong. Dissolution and regeneration of wool keratin in choline thioglycolate [J]. Journal of Textile Research, 2021, 42(01): 35-39.
[7] YU Jia, XIN Binjie, ZHUO Tingting, ZHOU Xi. Preparation and characterization of Cu/polypyrrole-coated wool fabrics for high electrical conductivity [J]. Journal of Textile Research, 2021, 42(01): 112-117.
[8] HENG Chong, SHEN Hua, WANG Fumei. Digital cashmere color measurement and its application in length measurement [J]. Journal of Textile Research, 2020, 41(12): 42-48.
[9] LI Tao, DU Lei, HUANG Zhenhua, JIANG Yuping, ZOU Fengyuan. Review on pattern conversion technology based on garment flat recognition [J]. Journal of Textile Research, 2020, 41(08): 145-151.
[10] SUN Jie, DING Xiaojun, DU Lei, LI Qinman, ZOU Fengyuan. Research progress of fabric image feature extraction and retrieval based on convolutional neural network [J]. Journal of Textile Research, 2019, 40(12): 146-151.
[11] CUI Guixin, DONG Yongchun, WANG Peng. Preparation and application properties of wool-Fe complex-based heterogeneous Fenton photocatalysts [J]. Journal of Textile Research, 2019, 40(12): 68-73.
[12] TU Li, MENG Jiaguang, LI Xin, LI Juanzi. Composition analysis and stripping process of waste wool/silk/cotton blended fabric [J]. Journal of Textile Research, 2019, 40(11): 75-80.
[13] WU Ying, ZHAN Zhu, WANG Jun. Local fabric texture stability characterization using general dictionary [J]. Journal of Textile Research, 2019, 40(11): 45-49.
[14] XU Qian, CHEN Minzhi. Garment grain balance evaluation system based on deep learning [J]. Journal of Textile Research, 2019, 40(10): 191-195.
[15] WEI Lingli, ZOU Qinshan, WANG Lu, LUO Jing, XIA Xin. Preparation of fluorine-free water repellent treated wool/cashmere fabrics [J]. Journal of Textile Research, 2019, 40(09): 102-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!