Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (09): 39-45.doi: 10.13475/j.fzxb.20201201707

• Fiber Materials • Previous Articles     Next Articles

Jet formation mechanism and film forming characteristics of multi-curved surface sprayer for electrospinning

QUAN Zhenzhen1,2, WANG Yihan1, ZU Yao1, QIN Xiaohong1()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Shanghai Key Laboratory of Lightweight Composite, Donghua University, Shanghai 201620, China
  • Received:2020-12-08 Revised:2021-05-31 Online:2021-09-15 Published:2021-09-27
  • Contact: QIN Xiaohong E-mail:xhqin@dhu.edu.cn

Abstract:

In order to achieve batch preparation of sub-micro fibers, a new type of multi-curved surface sprayer was studied. ANSYS Maxwell 3D software was used to simulate the electric field intensity distribution of multi-curved surface sprayer, the theoretical formula about free surface jet formation of curved surface was explored, polyacrylonitrile (PAN) microfiber membranes with different mass fractions were prepared by multi-curved surface sprayer, and their morphologies and yields were characterized using electron microscope and other instruments. The results show that the electric field intensity on the top of the sprayer is the largest, which is prone to wave instability and produce multiple jets. The sub-micro fibers obtained by the electrospinning device are smooth without beads, the average diameter increases with the increase of PAN concentration, and the yield is 103 times higher than that of the traditional single needle device.

Key words: electrospinning, multi-curved surface sprayer, finite element analysis, jet theory, sub-micro fibers, electricfield force, polyacrylonitrile

CLC Number: 

  • TS103.7

Fig.1

Multi-curved surface sprayer electrospun device. (a)Schematic diagram of device; (b)Cross section model of sprayer; (c)Spinning with multi-curved surface sprayer"

Fig.2

Geometric model of electric field simulation for multi-curved surface sprayer"

Tab.1

Properties of materials used in model"

材料 相对介电常数 体积电导率/(S·m-1)
不锈钢 1.00 1.10×106
1.00 3.80×107
PAN 3.92 1.04×10-2

Fig.3

Simulation electric field nephogram of multi-curved surface sprayer. (a) Electric field vector distribution; (b) Electric field line distribution"

Fig.4

Schematic diagram of free surface instability under external force. (a) One dimensional free surface; (b) Surface liquid layer"

Fig.5

Schematic diagram of free surface fluctuation of surface geometry"

Fig.6

SEM images of sub-micro fibers with different PAN concentrations (×8 000) and diameter distribution histograms"

[1] 钟智丽, 王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1):107-110.
ZHONG Zhili, WANG Xungai. Application prospect of nanofibers[J]. Journal of Textile Research, 2006, 27(1):107-110.
[2] AOKI H, MIYOSHI H, YAMAGATA Y. Electrospinning of gelatin nanofiber scaffolds with mild neutral cosolvents for use in tissue engineering[J]. Polymer Journal, 2015, 47(3):267-277.
doi: 10.1038/pj.2014.94
[3] DU H Y, WANG J, SU M Y, et al. Formaldehyde gas sensor based on SnO2/In2O3 hetero-nanofibers by a modified double jets electrospinning process[J]. Sensors and Actuators B:Chemical, 2012, 166:746-752.
[4] MA L C, WANG J N, LI L, et al. Preparation of PET/CTS antibacterial composites nanofiber membranes used for air filter by electrospinning[J]. Acta Polymerica Sinica, 2015 (2):221-227.
[5] ZHU X, WU J, SHAN W, et al. Sub-50 nm nanoparticles with biomimetic surfaces to sequentially overcome the mucosal diffusion barrier and the epithelial absorption barrier[J]. Advanced Functional Materials, 2016, 26(16):2728-2738.
doi: 10.1002/adfm.v26.16
[6] FENG L, LI S H, LI H J, et al. Super-hydrophobic surface of aligned polyacrylonitrile nanofibers[J]. Angewandte Chemie-International Edition, 2002, 41(7):1221-1223.
doi: 10.1002/(ISSN)1521-3773
[7] 张朔辰. 纳米材料概述[J]. 云南化工, 2017, 44(9):13-14,17.
ZHANG Shuochen. Summary of nanomaterials[J]. Yunnan Chemical Technology, 2017, 44(9):13-14, 17.
[8] WHITESIDES G M, GRZYBOWSKI B. Self-assembly at all scales[J]. Science, 2002, 295(5564):2418-2421.
doi: 10.1126/science.1070821
[9] VAZ B S, COSTA J A V, MORAIS M G. Production of polymeric nanofibers with different conditions of the electrospinning process[J]. Materia-Rio De Janeiro, 2017, 22(2):1-5.
[10] WANG J, NAIN A S. Suspended micro/nanofiber hierarchical biological scaffolds fabricated using non-electrospinning STEP technique[J]. Langmuir, 2014, 30(45):13641-13649.
doi: 10.1021/la503011u
[11] WANG L, ZHANG C B, GAO F, et al. Needleless electrospinning for scaled-up production of ultrafine chitosan hybrid nanofibers used for air filtration[J]. Rsc Advances, 2016, 6(107):105988-105995.
doi: 10.1039/C6RA24557A
[12] LANDAU O, ROTHSCHILD A. Fibrous TiO2 gas sensors produced by electrospinning[J]. Journal of Electroceramics, 2015, 35:148-159.
doi: 10.1007/s10832-015-0007-9
[13] 赵伟伟, 汪滨, 王娇娜, 等. 静电纺聚酰胺6纳米纤维膜的制备及其性能[J]. 纺织学报, 2017, 38(3):6-12.
ZHAO Weiwei, WANG Bin, WANG Jiaona, et al. Preparation and properties of electrospun polyamide 6 nanofibrous membranes[J]. Journal of Textile Research, 2017, 38(3):6-12.
[14] 冯雪, 汪滨, 王娇娜, 等. 空气过滤用聚丙烯腈静电纺纤维膜的制备及其性能[J]. 纺织学报, 2017, 38(4):6-11.
FENG Xue, WANG Bin, WANG Jiaona, et al. Preparation and properties of polyacrylonitrile nanofiber membranes used for air filtering by electrospinning[J]. Journal of Textile Research, 2017, 38(4):6-11.
[15] 李妮, 熊杰, 薛花. 静电纺参数对射流和纳米纤维形态的影响[J]. 纺织学报, 2010, 31(12):13-18.
LI Ni, XIONG Jie, XUE Hua. Effect of electrospinning parameters on morphologies of nanofibers and jet[J]. Journal of Textile Research, 2010, 31(12):13-18.
[16] 陈威亚, 刘延波, 张泽茹, 等. 多针头静电纺场强改善的有限元分析[J]. 纺织学报, 2014, 35(4):21-25,31.
CHEN Weiya, LIU Yanbo, ZHANG Zeru, et al. Finite element analysis of improvement of field intensity in multi-needle electrospinning[J]. Journal of Textile Research, 2014, 35(4):21-25, 31.
[17] 刘呈坤, 来侃, 孙润军, 等. 多针头静电纺丝工艺过程探讨[J]. 纺织学报, 2012, 33(8):7-10,23.
LIU Chengkun, LAI Kan, SUN Runjun, et al. Investigation on process of multi-needle electrospinning[J]. Journal of Textile Research, 2012, 33(8):7-10, 23.
[18] KIM I G, LEE J H, UNNITHAN A R, et al. A comprehensive electric field analysis of cylinder-type multi-nozzle electrospinning system for mass production of nanofibers[J]. Journal of Industrial and Engineering Chemistry, 2015, 31:251-256.
doi: 10.1016/j.jiec.2015.06.033
[19] AKAMPUMUZA O, GAO H C, ZHANG H N, et al. Raising nanofiber output: the progress, mechanisms, challenges, and reasons for the pursuit[J]. Macromolecular Materials and Engineering, 2018, 303(1):1-17.
[20] NIU H T, WANG X G, LIN T. Needleless electrospinning: influences of fibre generator geometry[J]. Journal of The Textile Institute, 2001, 103(7):787-794.
doi: 10.1080/00405000.2011.608498
[21] WANG X, NIU H T, WANG X G, et al. Needleless electrospinning of uniform nanofibers using spiral coil spinnerets[J]. Journal of Nanomaterials, 2009, 49(8):1582-1586.
[22] ALI U, NIU H, AALAM S, et al. Needleless electrospinning using sprocket wheel disk spinneret[J]. Journal of Materials Science, 2017, 52(12):7567-7577.
doi: 10.1007/s10853-017-0989-6
[23] THOPPY N M, BOCHINSKI J R, CLARKE L I, et al. Edge electrospinning for high throughput production of quality nanofibers[J]. Nanotechnology, 2011, 22(34):1-11.
[24] JIANG G J, ZHANG S, QIN X H. High throughput of quality nanofibers via one stepped pyramid-shaped spinneret[J]. Materials Letters, 2013, 106:56-58.
doi: 10.1016/j.matlet.2013.04.084
[25] WEI L, YU H N, JIA L, et al. High-throughput nanofiber produced by needleless electrospinning using a metal dish as the spinneret[J]. Textile Research Journal, 2018, 88(1):80-88.
doi: 10.1177/0040517516677232
[26] LIU Y, DONG L, FAN J, et al. Effect of applied voltage on diameter and morphology of ultrafine fibers in bubble electrospinning[J]. Journal of Applied Polymer Science, 2011, 120(1):592-598.
doi: 10.1002/app.v120.1
[27] KULA J, LINKA A, TUNAK M, et al. Image analysis of jet structure on electrospinning from free liquid surface[J]. Applied Physics Letters, 2014, 104(24):1-4.
[28] LIN Z Q, KERLE T, BAKER S M, et al. Electric field induced instabilities at liquid/liquid interfaces[J]. Journal of Chemical Physics, 2001, 114(5):2377-2381.
doi: 10.1063/1.1338125
[29] RUSSELL T P, LIN Z Q, SCHAFFER E, et al. Aspects of electrohydrodynamic instabilities at polymer inter-faces[J]. Fibers and Polymers, 2003, 4(1):1-7.
doi: 10.1007/BF02899322
[30] MILOH T, SPIVAK B, YARIN A L. Needleless electrospinning: electrically driven instability and multiple jetting from the free surface of a spherical liquid layer[J]. Journal of Applied Physics, 2009, 106(11):1-8.
[1] WU Qinxin, HOU Chengyi, LI Yaogang, ZHANG Qinghong, QIN Zongyi, WANG Hongzhi. Radiative cooling nanofiber medical fabrics and sensor system integration [J]. Journal of Textile Research, 2021, 42(09): 24-30.
[2] CAO Yuanming, ZHENG Mi, LI Yifei, ZHAI Wangyi, LI Liyan, CHANG Zhuningzi, ZHENG Min. Preparation of MoS2/polyurethane composite fibrous membranes and their photothermal conversion properties [J]. Journal of Textile Research, 2021, 42(09): 46-51.
[3] ZHANG Yaru, HU Yi, CHENG Zhongling, XU Shilin. Preparation and energy storage properties of polyacrylonitrile-based Si/C/carbon nanotube composite carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(08): 49-56.
[4] LU Jun, WANG Fujun, LAO Jihong, WANG Lu, LIN Jing. Finite element analysis of braided artificial ligaments of different structures under combined loading [J]. Journal of Textile Research, 2021, 42(08): 84-89.
[5] ZHOU Mengmeng, JIANG Gaoming, GAO Zhe, ZHENG Peixiao. Research progress in weft-knitted biaxial tubular fabric reinforced composites [J]. Journal of Textile Research, 2021, 42(07): 184-191.
[6] YAN Tao, PAN Zhijuan. Strain sensing performance for thin and aligned carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(07): 62-68.
[7] YANG Zhi, LIU Chengkun, WU Hong, MAO Xue. Preparation and characterization of lignin/polyacrylonitrile-based carbon fibers [J]. Journal of Textile Research, 2021, 42(07): 54-61.
[8] GUO Fengyun, GUO Ziyi, GAO Lei, ZHENG Linjing. Preparation and properties of thermal bonded fibrous artificial blood vessels [J]. Journal of Textile Research, 2021, 42(06): 46-50.
[9] DAI Yang, YANG Nannan, XIAO Yuan. Preparation and properties of resistive flexible humidity sensors using electrospun carbon nanotubes [J]. Journal of Textile Research, 2021, 42(06): 51-56.
[10] CHEN Yu, XIA Xin. Preparation and electrochemical properties of liquid GaSn self-repairing anode materials for lithium-ion batteries [J]. Journal of Textile Research, 2021, 42(06): 57-62.
[11] LIU Xiaoqian, CHEN Yu, ZHOU Huimin, YAN Yuan, XIA Xin. Preparation of polyacrylonitrile conductive nanofiber yarn grafted with acrylic acid using plasma technology [J]. Journal of Textile Research, 2021, 42(05): 109-114.
[12] ZHANG Beilei, SHEN Mingwu, SHI Xiangyang. Preparation and biomedical applications of electrospun short fibers [J]. Journal of Textile Research, 2021, 42(05): 1-8.
[13] ZHU Zhexin, MA Xiaoji, XIA Lin, LÜ Wangyang, CHEN Wenxing. Photocatalytic performance of iron hexadecachlorophthalocyanine/ polyacrylonitrile composite nanofibers synergistically enhanced by chloride ion [J]. Journal of Textile Research, 2021, 42(05): 9-15.
[14] ZHANG Lin, LI Zhicheng, ZHENG Qinyuan, DONG Jun, ZHANG Yin. Preparation and performance of flexible and anisotropic strain sensor based on electrospinning [J]. Journal of Textile Research, 2021, 42(05): 38-45.
[15] YU Meiqiong, YUAN Hongmei, CHEN Lihui. Rheological properties of cellulose/LiCl/ N, N-dimethylacetamide solution [J]. Journal of Textile Research, 2021, 42(05): 23-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!